Выбрать главу

Одни и те же обучающиеся алгоритмы не только способны выполнять бесконечно разнообразные задачи. По сравнению с алгоритмами, на смену которым они приходят, алгоритмы машинного обучения потрясающе просты. Большинство из них можно выразить в нескольких сотнях строк кода или, может быть, нескольких тысячах, если добавить много «примочек». В то же время программы, которые они вытесняют, иногда занимают сотни тысяч или даже миллионы строк кода, а ведь один обучающийся алгоритм способен породить неограниченное количество различных программ.

Если столь малый набор обучающихся алгоритмов может так много, возникает логичный вопрос: реально ли, чтобы один такой алгоритм делал вообще все? Другими словами, сможет ли единственный алгоритм научиться всему, что можно узнать из данных? Эта проблема — очень крепкий орешек, ведь сюда входит все, что знает взрослый человек, все, что создала эволюция, весь комплекс научных знаний. По правде говоря, все важнейшие алгоритмы машинного обучения, включая метод ближайших соседей, дерево принятия решений и байесовские сети (обобщение наивного байесовского классификатора), универсальны, то есть, если дать им достаточно соответствующих данных, они смогут аппроксимировать любую функцию сколь угодно точно: на языке математики это значит «научиться чему угодно». Ловушка в том, что «достаточно данных» может означать «бесконечный объем данных». Для обучения на основе конечных данных нужны допущения, и, как мы увидим, разные обучающиеся алгоритмы делают их по-разному, поэтому хорошо подходят для решения одних задач и не очень — для других.

А если не оставлять эти допущения внутри алгоритма, а делать их явными входными данными, наряду с собственно данными, и предоставлять пользователю право выбора, какие из них подключать и, возможно, даже задавать новые? Есть ли алгоритм, который может взять любые данные и предположения и на выходе дать скрытые в них знания? Я думаю, такой алгоритм существует. Конечно, нужно как-то ограничить эти допущения, иначе можно обмануть самого себя, дав алгоритму все искомое знание или что-то схожее в виде допущений. Однако есть много способов этого избежать — от ограничения объема вводных до требования, чтобы исходные допущения не были больше, чем допущения текущего алгоритма.

В таком случае вопрос сводится к следующему: насколько слабыми могут быть допущения, чтобы все еще позволять получать из конечных данных все полезное знание? Обратите внимание на слово «полезное»: нас интересует только знание о нашем мире, а не о несуществующих мирах, поэтому изобретение универсального обучающегося алгоритма сводится к открытию глубочайших закономерностей нашей Вселенной, общих для всех явлений, а затем — к нахождению эффективного с точки зрения вычислений способа соединить их с данными. Как мы увидим, требование вычислительной эффективности не позволяет использовать в качестве таких закономерностей законы физики, однако оно не подразумевает, что универсальный алгоритм машинного обучения должен быть столь же эффективным, как более специализированные. Как часто бывает в информатике, мы готовы пожертвовать эффективностью ради универсальности.

Это также касается количества данных, необходимого, чтобы получить искомое знание: универсальному обучающемуся алгоритму в целом потребуется больше данных, чем специализированному, однако это не беда, при условии, что эти данные есть в нашем распоряжении, а чем больше становится общий объем данных, тем больше вероятность, что их для наших целей окажется достаточно.

Итак, вот центральная гипотеза этой книги:

Все знание — прошлое, настоящее и будущее — можно извлечь из данных с помощью одного универсального обучающегося алгоритма.

Я называю этот алгоритм Верховным. Если его создание оказалось бы возможным, это стало бы одним из величайших научных достижений за всю историю человечества. Более того, Верховный алгоритм — последнее, что нам придется изобрести, потому что, как только мы «спустим его с цепи», он сам изобретет вообще все, что только можно придумать. Все, что нам нужно, — дать ему достаточно подходящих данных, и он откроет соответствующее знание. Дайте ему видеопоток, и он научится видеть. Дайте библиотеку — и он научится читать. Дайте результаты физических экспериментов, и он сформулирует законы физики. Дайте данные кристаллографии ДНК, и он откроет структуру этой молекулы.