Выбрать главу

В какой мере характер физических законов распространяется на более высокие области знания, например биологию и социологию, нам еще предстоит узнать, но исследования хаоса дают много завораживающих примеров схожего поведения в очень разных системах, и теория универсальности это объясняет. Красивый пример того, как очень простая процедура итерации может породить неистощимое разнообразие форм, — множество Мандельброта[23]. Если горы, реки, облака и деревья — результат аналогичных процессов, а фрактальная геометрия показывает, что так оно и есть, возможно, эти процессы — просто разная параметризация одной-единственной процедуры, которую мы можем вывести на их основе.

В физике те же уравнения, примененные к разным параметрам, часто описывают явления в совершенно разных областях, например квантовой механике, электромагнетизме и динамике жидкостей. Волновое уравнение, уравнение диффузии, уравнение Пуассона: если открыть что-то в одной отрасли, будет проще обнаружить аналоги в других, а если научиться решать одно из уравнений, это даст решение для всех сразу. Более того, эти уравнения довольно простые, и в них учитываются те же несколько производных параметров в отношении пространства и времени. Довольно вероятно, что они частные случаи некоего более общего уравнения, и все, что нужно сделать Верховному алгоритму, — выяснить, как конкретизировать его для частных наборов данных.

Еще одну линию доказательств можно найти в оптимизации — математической дисциплине, занимающейся нахождением аргумента, который дает максимальное значение функции. Например, поиск последовательности биржевых сделок, максимизирующей ваш совокупный доход, — это задача по оптимизации. В оптимизации простые функции часто дают удивительно сложные решения. Оптимизация играет выдающуюся роль практически во всех областях науки, технологии и бизнеса, включая машинное обучение. Каждая область оптимизируется в рамках, очерченных оптимизациями в других областях. Мы пытаемся максимизировать наше счастье в рамках экономических ограничений, которые, в свою очередь, становятся лучшими решениями для компаний в пределах доступных технологий, а те представляют собой лучшие решения, которые мы можем найти в рамках биологических и физических ограничений. Биология — результат оптимизации, произведенной эволюцией в рамках ограничений физики и химии, а сами законы физики — те же решения проблем оптимизации. Наверное, все, что существует, — это прогрессирующее решение всеобщей проблемы оптимизации, и Верховный алгоритм следует из формулировки этой проблемы.

Физики и математики — не единственные, кто находит неожиданные связи между разными областями. В своей книге Consilience («Непротиворечивость») видный биолог Эдвард Уилсон страстно отстаивает единство всего знания — от точных наук до гуманитарных дисциплин. Верховный алгоритм — высочайшее выражение этого единства: если знание объединено общей схемой, значит, Верховный алгоритм существует, и наоборот.

Тем не менее простота физики уникальна. За пределами физики и инженерии достижения математики не так бесспорны: иногда она представляет собой единственный разумный и эффективный путь, а иногда математические модели слишком грубы, чтобы быть полезными. Тенденция к излишнему упрощению вытекает, однако, из ограничений человеческого разума, а не только из ограничений математики как таковой. Жесткий (вернее, студенистый) диск в голове человека в основном занят восприятием и движениями, и для упражнений в математике нам приходится заимствовать области, предназначенные эволюцией для языка. У компьютеров таких ограничений нет, и они могут с легкостью превращать большие объемы данных в очень сложные модели. Машинное обучение — это то, что получается, когда необъяснимая эффективность математики сливается с необъяснимой эффективностью данных. Биология и социология никогда не будут такими простыми, как физика, однако метод, благодаря которому мы откроем их истины, может оказаться несложным. 

Аргумент из области статистики

Согласно одной из школ статистики, в основе всего обучения лежит одна простая формула, а именно теорема Байеса, которая определяет, как корректировать предположения при появлении новых доказательств. Байесовский алгоритм начинает с набора гипотез о мире. Когда он видит новые данные, гипотезы, согласующиеся с ними, становятся более вероятными, а те, что с ним не согласуются, — менее вероятными (или даже невозможными). После того как было рассмотрено достаточно данных, начинает доминировать одна или несколько гипотез. Например, я ищу программу, которая точно предсказывает движение курсов акций, и, если акции, которым программа-кандидат предсказывала падение, пойдут вверх, эта программа потеряет доверие. После того как я рассмотрю некоторое число кандидатов, останутся лишь некоторые достоверные, и они будут воплощать мои знания о рынке акций.

вернуться

23

Классический пример фрактала — математического множества, обладающего свойством самоподобия (объект, в точности или приближенно совпадающий с частью себя самого). Множество Мандельброта — один из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям. Его фрагменты не строго подобны исходному множеству, но при многократном увеличении определенные части все больше похожи друг на друга.