ГЛАВА 1. Понятие «вероятность» в истории науки
1.1. Дискуссии о вероятности
В XIX и в XX веках уже было показано, что понятие «вероятность» чрезвычайно широко употребимо в разных областях науки. Причем область применения этого понятия постоянно расширялась, что происходило главным образом за счет внедрения в различные сферы познания вероятностно-статистических методов, которые существенным образом опираются на понятие «вероятность».
Выяснение познавательных границ, гносеологического содержания и функций этих методов стало одной из важных задач философско-метододогического анализа. В его рамки раскрытие природы, содержания понятия «вероятность», вхождение которого в теоретические построения современной науки ставит вопрос о способах применения научного рационализма с вероятностным стилем мышления. Наряду с этим подобный анализ, касаясь содержательной стороны фундаментальных понятий теории вероятностей, приобрел существенное значение для глубокого понимания данной математической теории и составляет одно из важных условий ее разработки.
В свете сказанного, представляет интерес рассмотрение различных подходов к истолкованию вероятности, имеющее целью, как оценку их глубокого методологического контекста, так и выяснение координации и субординации между ними и т.д. Среди этих подходов особое место принадлежит классическому и частотному подходам. Они не потеряли, на мой взгляд своего значения и в настоящее время. Это объясняется важностью и незавершенностью ряда вопросов, поднимаемых в их рамках.
Классическое истолкование вероятности было исторически первым и в явной форме сформулировано выдающимися математиками прошлого - Я.Бернулли и П.Лапласом. Понятие вероятности выражено было ими на языке математики, с использованием, в первую очередь, достижений комбинаторики.
П.Лаплас определял вероятность как отношение числа случаев, благоприятствующих явлению к числу всех возможных случаев.[1] Подобное определение более точно, нежели используемое в обыденной речи интуитивное понятие вероятности. Однако область его приложения весьма узкая. Это отмечал, например, Я.Бернулли, указывая, что применение классического понятия вероятности ограничивается, пожалуй, азартными играми, в которых совершенно известны числа случаев, влекущих выигрыш или проигрыш, а сами случаи могли бы встречаться одинаково легко. [2]
Развернутое определение вероятности формулировалось П.Лапласом следующим образом: «Теория случайностей состоит в том, чтобы свести все однородные явления к известному числу равно возможных случаев, т.е. таких, существование которых было бы одинаково неопределенно, и определить число случаев, благоприятствующих явлению, вероятность которого отыскивается. Отношение этого числа к числу всех возможных случаев и есть мера этой вероятности, которая, таким образом, не что иное, как дробь, числитель которой есть число всех благоприятных случаев, а знаменатель - число всех возможных случаев».[3]
Итак, классический подход связан, прежде всего, с возможностью установления полной группы событий, которая должна быть конечной. Другое важное допущение, принимаемое при этом подходе, состоит в том, что постулируется равновозможность событий такой группы. Поэтому важнейшее значение приобретает для классической теории поиск критерия равновозможности события.
Такой критерий формулировался Лапласом следующим образом: равновозможные - это такие события, о которых мы равно мало знаем, чтобы предпочесть одно другому. Позже этот критерий получил наименование «принципа недостаточного основания».[4] Неоднократно отмечалось, однако, что этот принцип является весьма туманным и нечетким логическим правилом.
Шаткость этого критерия обнаруживается при применении его к более или менее сложным случаям, что легко показывается с помощью такого примера:
Пусть дано тело, удельный объем которого заключен между 1 и 3 единицами. Тогда, согласно «принципу недостаточного основания» мы с равной вероятностью можем предположить, что он заключен как в интервале от 1 до 2 единиц, так и в интервале от 2 до 3 единиц. Если же теперь рассмотреть удельный вес тела, что с физической точки зрения равнозначно, то, согласно тому же принципу недостаточного основания, имеется одинаковая возможность отыскать его значение как в интервале от 1 до 2/3, так и между 2/3 и 1/3 (ибо интервал возможного удельного веса составляет от до 1/3). Но эти равно-возможные интервалы удельных весов не соответствуют физически равновозможным интервалам удельных объектов, установленных выше по тому же самому принципу. Возникает парадокс.[5] Хорошо известны также парадоксы Бертрана, показывающие трудности решения задачи «равновозможности» и направленные против нечеткости и неточности исходных понятий классической теории.