Далее. Неопределенность в развитии материальных систем имеет место и вследствие того, что всегда возникают новые возможности, которых не было в прошлых состояниях системы. Как показал С.Т.Мелюхин, отрицание зарождения новых возможностей равносильно признанию конца развития, конца мира.[8]
Но наличие объективной неопределенности если не отрицает полностью, то по крайней мере значительно сужает сферу приложимости лапласовской абстракции «жесткой» определенности, оставляя тем самым место для вероятности среди объективных понятий, как особой характеристики этой объективной неопределенности.
Наряду с рассмотренными выше гносеологическими и методологическими пороками классической концепции серьезным ее недостатком являлась узость сферы, где классическое понятие работало достаточно удовлетворительно (азартные игры, страховое дело, лотереи). Со всей очевидностью необходимость радикальных перемен в теории вероятностей обнаружилась лишь с переходом к исследованию класса непрерывных и бесконечных величин. Начало такого рода исследованиям положила статистическая физика (Клаузиус, Максвелл, Гиббс).
Весьма приспособленной к решению нового круга задач оказалась концепция вероятности, связывающая ее не с поведением индивидуального объекта, как в классической теории, а с массовыми случайными событиями, с классом объектов, которые комбинируют индивидуальную иррегулярность с агрегатной регулярностью. Этот подход получил в литературе название частотного или статистического.
Начало такому подходу положил Дж.Венн, хотя ряд предварительных соображений был высказан еще Эл-лисом, Пуассоном и др. Дж Венн был первым, кто ясно поставил проблему определения области приложения понятия и теории вероятностей, правомерность которой до него просто не осознавалась, ибо эта область считалась интуитивно ясной.[9] Такой областью применения понятия вероятности Венн считал массовые случайные события. Для характеристики этих событий им введено было понятие СЕРИИ, которое, как замечают в названной выше статье Б.Н.Пятницын и В.И.Метлов, вполне родственно позднее развитому Р.Мизесом понятию КОЛЛЕКТИВА.
Обычно частотный подход связывают с учением о вероятностях, представленным в работах немецкого математика Р. фон Мизеса. Его концепция была систематизирована и уточнена затем Г. Рейхенбахом. Позиция Мизеса оказалась весьма противоречивой, что уже не раз отмечалось в литературе.[10] Свидетельство тому -истолкование им теории вероятностей в качестве отрасли математического естествознания, и в то же время он предпринимает попытки сформулировать ее как строгую математическую дисциплину, что обнаруживается, скажем, в соотнесенности базисного понятия данной концепции - коллектива - с традиционным математическим понятием - предел. В то же время Мизес неоднократно подчеркивает, что идеальный и абстрактный объект - коллектив - не является математическим объектом. [11] По существу же в данном пункте Мизес сталкивает стремление к математической корректности в определении понятия коллектива с основным требованием радикального эмпиризма - идеализация должна быть непосредственно связанной с наглядно наблюдаемым.
В концепции, развиваемой Мизесом, имеет место также переплетение собственно конструктивных и философских задач, вследствие чего надо различать его теорию частоты и философско-методологическую интерпретацию данной теории. В философском плане эта концепция вписывается в рамки редукционистской программы. Суть последней, как известно, составляют два следующих момента:
1) указание так называемого базисного языка как фрагмента естественного языка;
2) утверждение о том, что познавательная ценность терминов теории определяется их отношением к базисному языку.
Выбор базисного языка дает ряд форм редукционизма, например, феноменализм и физикализм.
Мизесовский подход избирает в качестве базисного языка язык относительных частот. В то же время высказывается убеждение, что возможен перевод в термины относительных частот большинства вероятностных высказываний, используемых в науке.
Исходным пунктом этого подхода является утверждение о тождественности вероятности с эмпирически наблюдаемыми частотами. Поскольку же вероятность выступает как объект математики, требуются средства для перехода от вероятности к эмпирическому материалу. Мизес усматривает это средство в понятии коллектива.