Выбрать главу

φ — угол падения (отражения)

Δφ в.л. — поворот зеркала относительно нулевого положения (4–5 гр.)

П — «перископичность»

ξ в.н. — предельное значение угла места (верх, низ)

Зоны обзора

Первая задача, которая возлагается на обзорно-прицельную систему (ОПС), — это поиск и обнаружение целей. Для этого ОПС должна иметь максимально возможную зону просмотра в связанной системе координат вертолета. Это позволяет производить разведку местности, не накладывая ограничений на траекторию полета вертолета. Иными словами, ОПС должна обеспечивать перемещение ЛВ по горизонтали и вертикали по командам операторов в широких диапазонах (рис. 4).

В «зеркальной» системе это достигается изменением наклона зеркала для перемещения ЛВ по вертикали и поворотом узла зеркала вокруг вертикальной оси для перемещения JIB по горизонтали. Конструктивно «зеркальная» ОПС, как правило, выполняется в виде перископа, у которого головное зеркало подвешено на кардане, гиростабилизировано и управляется по двум осям.

Поворот зеркала вокруг горизонтальной оси приводит к угловому перемещению ЛВ в вертикальной плоскости на удвоенный угол. Размеры зеркала зависят от диаметра пропускаемого светового потока (D), по этому его ширина примерно равна D, а длина зависит от диапазона перемещения ЛВ по вертикали (рис. 5 и 6).

Из графика L=f(ξ) на рис. 6 видно, что при достижении угла места около 48° происходит удвоение длины зеркала от номинального, а при 60° — утроение. Соответственно растут габариты всей головной части прибора, отодвигается и растет по размерам входное окно (см. рис. 6). Увеличение размера зеркала, кроме веса, увеличивает его момент инерции по «кубу». Если в «платформенных» системах момент инерции подвижной части является стабилизирующим, то есть полезным фактором, то в «зеркальных» системах это вредный фактор, так как приходится преодолевать инерцию зеркала и поворачивать его один к одному, а точно на половину угла перемещения ЛВ.

Из графика Нo= f(ξ) можно увидеть, как растут размеры входного окна при увеличении «прокачки» ЛВ по вертикали. Для прибора с диапазоном перемещения ЛВ по вертикали Δξ=+20–30° размер входного окна составляет около 1,9 D, для приборов с Δξ=+20–40° — около 2,4 D, а для Δξ=+20–50° — около 3,22 D. При этом нужно помнить, что толщина оптических защитных стекол должна составлять не менее 10 % от линейного размера стекла.

Как уже говорилось, сканирование ЛВ по горизонтали в «зеркальной» системе осуществляется поворотом рамки головного зеркала относительно вертикальной оси. Перископическая система, как это видно на рис. 7, имеет свойство разворота поступающего на вход изображения при повороте головного зеркала относительно вертикальной оси. При повороте ЛВ по горизонтали на угол В на такой же угол наклоняется изображение в окуляре (на экране МФИ). Для устранения этого явления при конструировании оптических перископических приборов, работающих в видимом участке спектра, применяются специальные компенсационные устройства в виде разворачивающихся призм («Дове», «Пехана»), помещенных на участке параллельного светового пучка. При конструировании «ночных» систем, работающих в ИК-диапазоне, с объективом большого диаметра создание подобных компенсационных устройств практически нереально, поскольку слишком велики габариты и вес призмы, большие потери на светопропускание и высокая цена материала.

Другие способы компенсации, например, разворот камеры тепловизира или электронный разворот изображения на экране МФИ, также являются плохим решением. Прибор с разворачивающейся камерой значительно усложняется, зазоры в опорах (подшипниках) могут привести к ухудшению разрешающей способности системы.

Электронная компенсация фактически означает, что поле зрения системы становится круговым и мгновенное поле зрения сужается до величины развертки по вертикали, то есть в отношении 3/4 (рис. 8).

При сканировании ЛB по горизонтали необходимо также обеспечивать соответствующие размеры входного окна. Если диапазон Δβ не слишком велик, входное окно может быть выполнено с помощью двух V-образных стекол, образующих фонарь, который обеспечивает пропускание светового потока в заданном диапазоне (рис. 5). Однако применение V-образного окна имеет жесткие ограничения из-за возможного переотражения и возврата светового потока (так называемый «нарцисс-эффект»). Наибольший диапазон перемещения ЛВ в горизонтальной плоскости около ±35° достигается при угле между стеклами 90-100°. При дальнейшем увеличении диапазона такое техническое решение себя исчерпывает, и потребуется создание входного окна, перемещающегося совместно с зеркалом, то есть разворачивающийся колпак. Такая конструкция возможна, но она также приводит к усложнению и лишает прибор одного из преимуществ «зеркальной» системы — герметичности. Кроме того, еще актуальнее становится решение вопроса о компенсации разворота изображения на экране.

В системе со стабилизированной платформой вопрос о диапазонах углов прокачки ЛВ по вертикали и горизонтали решается практически полностью. Гиростабилизированная платформа имеет по крайней мере две оси: вертикальную главную и горизонтальную подвижную (то есть «кардан»). Угловые перемещения платформы по обеим осям ограничиваются лишь соединительными кабелями, если не используются токосъемные устройства, vi, как правило, они значительно больше фактически востребованных.

Зона обзора «платформенной» обзорноприцельной системы определяется ее размещением на вертолете, при котором в определенных участках в поле зрения прибора неизбежно попадают элементы конструкции вертолета. Как известно, при подходе ЛВ к 90° по углу места в карданной системе с вертикальной главной осью резко возрастают угловые скорости вокруг вертикальной оси (до бесконечности). Иными словами, практически существует мертвая зона в виде конуса около 10° к вертикальной оси.

Вопрос о размерах входных окон в этом классе обзорно-прицельных систем также решается автоматически, так как они размещаются на внешней оболочке прибора и перемещаются вместе с гиростабилированной платформой. Поэтому размеры входных окон практически равны диаметру светового потока (см. рис. 3).

Рис. 6. Зависимости габаритных параметров элементов «зеркальной» системы

Подводя итог сказанному, можно сделать следующие выводы:

— «зеркальная» круглосуточная система, в отличие от «платформенной», практически не может иметь достаточных диапазонов по перемещению ЛВ. Даже при ограниченных углах от +20 до -40° по вертикали и ±30° по горизонтали, размеры зеркала достигают 2,34 D, размеры входного окна по вертикали составляют около 2,4 D, а по горизонтали — около 2,5 D. Это приводит к значительным увеличениям габаритов и массы прибора и, как следствие, к большим проблемам с его размещением на вертолете (рис. 6);

— система с гиростабилизированной платформой практически не имеет ограничений по углам. Это, в свою очередь, означает, что вертолет, имеющий «зеркальную» обзорно-прицельную систему с ограниченным полем обзора, вынужден компенсировать этот дефицит изменением углового пространственного положения всего вертолета, как это вынужден делать одноместный вертолет, то есть изменять траекторию движения, подчиняя ее потребностям разведки и прицеливания, что не всегда возможно и небезопасно (рис. 4);

— из-за малых диапазонов перемещения JIB «зеркальная» ОПС не может использоваться для управления турельными установками со стрелково-пушечным оружием, имеющим большие сектора обстрела по вертикали и горизонтали.

Рис. 7. Эффект «скручивания» светового потока «зеркальной» системы

Рис. 8. Электронное парирование «скручивания» светового потока