Выбрать главу

Все перечисленное в совокупности и является платой за то, что вертолет в отличие от самолета может взлетать и садиться вертикально, осуществлять висение и перемещения на малых скоростях полета. Именно поэтому борьба за повышение скорости и дальности полета винтокрылых ЛА была и остается весьма актуальной. Однако конструкторы вертолетов до настоящего времени не могут преодолеть проблему существенного роста аэродинамического сопротивления несущего винта при скорости более 300 км/ч.

Возможности несущего винта

Несущий винт вертолета проектируется, в первую очередь, для обеспечения висения, перемещений у земли с небольшими скоростями и достижения необходимых величин статического и динамического потолка. По результатам исследований, у современных вертолетов заданные летные данные могут быть получены, если скорость обтекания потоком воздуха концевых сечений скоростных профилей лопастей будет равна 220-230 м/с. Для реализации такой скорости на несущем винте требуется почти в 100 раз уменьшить частоту вращения свободных турбин двигателей. Это обеспечивается механической трансмиссией и выбором передаточного отношения ее главного редуктора.

В полете мощность двигателей NНВ , потребляемая несущим винтом, расходуется на обеспечение его вращения для создания необходимой величины тяги Т = = Gпол и пропульсивной силы:

При этом NНВ = Ni + Np где Ni и Np - индуктивная и профильная составляющие мощности.

По результатам исследований, индуктивные затраты мощности на режиме висения составляют 73-78%, на средних скоростях – 40% и уменьшаются до 13% на максимальной скорости полета вертолета.

Вредное сопротивление ненесущих частей вертолета с ростом скорости увеличивается по квадратной параболе, а потребная мощность двигателей на его преодоление – по кубической параболе. Потери мощности на преодоление вредного сопротивления составляют 15-10% на средних скоростях и 40-35% на максимальной скорости полета. Профильные потери мощности на вращение несущего винта на висении составляют 22-27%, а на максимальной скорости полета – 50% и более. При этом критическое число Мкр концевых сечений лопастей на относительном радиусе 0,9-1,0 должно быть не менее 0,9.

Исследования также показали, что на режиме полета

потребная мощность на вращение несущего винта увеличивается из-за проявления эффекта сжимаемости воздуха на 15-18%. Если число М полета вертолета достигает значения Мкр + 0,15, то увеличение потребной мощности силовой установки составит уже около 30%.

Приоритетными летными характеристиками для транспортно-пассажирского вертолета являются дальность полета L с заданной коммерческой нагрузкой, оптимальная крейсерская скорость полета Vкр и минимально возможный километровый расход топлива q. Минимизировать q на крейсерских режимах полета вертолета можно за счет снижения потерь мощности на преодоление профильного сопротивления НВ путем уменьшения его частоты вращения ω. Это обеспечивается регуляторами частоты вращения свободных турбин двигателей. Существующие вертолетные газотурбинные двигатели позволяют уменьшить ω только на 10-12%.

От величины крейсерской скорости зависит как километровый расход топлива, так и дальность полета ЛА. В связи с этим необходимо выявить возможности НВ для реализации максимально возможных значений крейсерских скоростей винтокрылых аппаратов.

Факторы, ограничивающие скорость полета

Дальнейшее увеличение скорости полета вертолета после достижения Мкр + + 0,15 сопровождается интенсивным ростом волнового сопротивления на лопастях НВ. Для вращения НВ и преодоления его профильного сопротивления в этом случае требуется значительное увеличение мощности силовой установки. Именно в этом заключается физический и экономический смысл ограничения скорости полета транспортно-пассажирского вертолета. Увеличение его крейсерской скорости до 300 км/ч и более сопряжено с нерациональным использованием мощности двигателей, что приводит к повышенным километровым расходам топлива, увеличению потребного запаса топлива, уменьшению веса перевозимого груза и дальности полета.

По мере увеличения скорости полета вертолета и возрастания полной аэродинамической силы на НВ возникают, а затем расширяются зоны повышенных, критических и закритических углов атаки элементов сечений отступающих лопастей при их вращении и связанное с этим явление срыва потока воздуха.

Негативность зон срыва воздуха на НВ проявляется в увеличении напряжений в лопастях, шарнирных моментов и потребных усилий в цепях управления, в росте вибрации аппарата, его разбалансировке и ухудшении управляемости. Кроме того, вносимая в динамически нагруженные элементы конструкции вертолета (лопасти, втулка, автомат перекоса, элементы системы управления НВ) повреждаемость более интенсивно уменьшает их ресурс. Это является дополнительным фактором, ограничивающим скорость вертолета.

Существуют конструктивные факторы ограничения скорости. С ростом скорости полета вертолета расширяющиеся зоны срыва потока воздуха на НВ приводят к отклонению вектора полной аэродинамической силы в поперечном отношении, увеличению боковой силы на НВ и кренящего момента. Для парирования этого момента с ростом скорости требуется увеличение полной аэродинамической силы и отклонение ее вектора в поперечном отношении рычагом управления. Это также сказывается на возрастании нерациональной траты мощности силовой установки. Для преодоления и уравновешивания вредного сопротивления QBp вертолета с ростом скорости полета требуется соответствующее увеличение пропульсивной силы НВ. Это обеспечивается за счет увеличения угла атаки НВ, его полной аэродинамической силы и отклонения ее вектора вперед на необходимую величину.

Угол атаки НВ вертолетов, как правило, ограничен величиной минус 20-25°. С целью предотвращения столкновения лопастей НВ с носовым отсеком фюзеляжа в системе управления вертолетом предусматривается конструктивный упор, ограничивающий отклонение вперед рычага управления.

Комбинированные винтокрылые ЛА

В нашей стране и за рубежом проводились интенсивные исследования скоростных винтокрылых летательных аппаратов на базе использования для взлета и посадки вертолетных несущих винтов. Эти исследования, например, в Англии (1957 г.) и СССР (1959 г.) завершились постройкой экспериментальных винтокрылов «Ротодайн» и Ка-22.

В то время наиболее простым решением для достижения на винтокрылах больших скоростей и дальностей полета считались установка крыла и движителей с целью разгрузки НВ и уменьшение профильных потерь мощности на его вращение.

Однако этим надеждам не суждено было осуществиться из-за использования вертолетного несущего винта. Вместе с несущим винтом винтокрылы унаследовали те же проблемы и ограничения, которые присущи вертолетам.

Идея разгрузки вертолетного несущего винта на больших скоростях полета оказалась живучей. Сегодня конструкторы винтокрылых летательных аппаратов большие надежды возлагают на возможность использования комбинации «вертолетный НВ – движитель» подобно самолетной комбинации «крыло – движитель».

На самолете подъемную силу создает крыло, а силу тяги – тянущие или толкающие пропеллеры. На вертолете в поступательном движении НВ создает как силу тяги, так и пропульсивную (тянущую) силу. В ряде работ рассматриваются проекты винтокрылых аппаратов, у которых на больших скоростях полета несущему винту, как и крылу, предлагается оставить только функцию создания тяги, уравновешивающей силу тяжести аппарата, а получение пропульсивной силы возложить на пропеллер.

Для реализации на винтокрылых ЛА, использующих НВ, крейсерской скорости 400 км/ч и выше необходимо минимизировать профильное сопротивление лопастей винта и потери профильной мощности. Добиться этого можно, если скорость обтекания потоком воздуха концевых сечений наступающих лопастей не будет превышать величины