А если так, то непременно должны существовать люди с одинаковым числом волос! И не только во всем мире, но даже в каждом многолюдном городе, насчитывающем больше 200 тысяч жителей. В Москве 1,5 миллиона[2] жителей, и, значит, десятки москвичей должны иметь одинаковое число волос. Ведь не может же быть полутора миллиона различных целых чисел, среди которых ни одно не оказалось бы больше 200 000.
15. Обычно, не подумав, отвечают:
— Переплет стоит 50 коп.
Но ведь тогда книга стоила бы 2 руб., т. е. была всего на 1 руб. 50 коп. дороже переплета!
Верный ответ такой: цена переплета — 25 коп., цена книги — 2 руб. 25 коп.
16. Иванов, как ни странно, и теперь будет платить меньше, чем остальные покупатели платили до 1 января. Он имеет 20 %-ю скидку с цены, увеличенной на 20 %; другими словами, скидку 20 % от 120 %, т. е. платить он будет за книгу не 100 %, а всего лишь 96 % прежней ее цены. Трехрублевую книгу приобретет не за 3 руб., а за 2 руб. 88 коп.
17. Если бы все 26 голов на лугу были человеческие, мы насчитали бы не 82 ноги, а только 52, т. е. на 30 ног меньше. От замены одного человека лошадью число всех ног увеличилось бы на 2. Значит, чтобы насчитать 82 ноги, надо произвести подобную замену 15 раз, тогда и найдутся недостающие 30 ног. Итак, из 26 голов 15 принадлежало лошадям, а остальные 11 — людям.
18. 25 рублей можно отложить на счетах 25 косточками так, как показано на рис. 22.
Рис. 22. На конторских счетах 25 отложено двадцатью пятью косточками.
В самом деле, здесь отложено 20 руб. + 4 руб. + 90 коп. + 10 коп. = 25 руб. При этом использовано 2 + 4 + 9 +10 = 25 косточек.
19. Разве римляне, чеканя монету до P. X., могли знать, что через 53 года родится Христос?
20. Покупательница прогадала. Пучок с двойным обхватом заключает в себе не вдвое, а вчетверо больше спаржи, нежели тонкий (рис. 20). Женщина должна была либо заплатить вдвое меньше, либо же потребовать не два, а четыре тонких пучка.
Десять задач потруднее
21 Сколько прямоугольников
Сколько прямоугольников можете вы насчитать в этой фигуре (рис. 23)?
Рис. 23. Квадрат, разделенный на квадраты.
Не спешите с ответом. Обратите внимание на то, что спрашивается не о числе квадратов, а о числе прямоугольников — больших и малых, — какие только можно насчитать в этой фигуре.
22. Реомюр и Цельсий
Вы знаете, конечно, разницу между термометрами Реомюра и Цельсия (рис. 24)? Всегда ли градусы на термометре Реомюра больше, чем градусы на термометре Цельсия?
Рис. 24. Термометры Реомюра и Цельсия.
23. Столяр и плотники
Шесть плотников и столяр нанялись на работу. Плотники заработали по 20 руб., столяр же — на 3 руб. больше, чем заработал в среднем каждый из семерых.
Сколько заработал столяр?
24. Девять цифр
Напишите по порядку девять цифр:
1 2 3 4 5 6 7 8 9
Вы можете, не меняя расположение цифр, вставить между ними знаки плюс и минус таким образом, чтобы в сумме получилось ровно 100. Нетрудно, например, вставив + и — шесть раз, получить 100 таким путем:
12+ 3–4 + 5 +67+ 8 + 9 = 100
Если хотите вставить + и — только 4 раза, то тоже получите 100:
123 + 4–5 + 67–89 = 100
Попробуйте, однако, получить 100, пользуясь знаками + и — всего только три раза! Это гораздо труднее. И все же вполне возможно, надо только терпеливо искать решение.
25. Книжный червь
В моем книжном шкафу стоят на полке сочинения Пушкина в 8 томах, том к тому. Приехав с дачи, я с досадой убедился, что летом книжный червь усердно сверлил моего Пушкина и успел прогрызть ход от первой страницы первого тома до последней страницы третьего.
Рис. 25. Собрание сочинений А. С. Пушкина в восьми томах и книжный червь.
Сколько всего страниц прогрыз червь, если в первом томе 700 страниц, во втором — 640, а в третьем — 670?
26. Сложение и умножение
Вы, без сомнения, не раз уже обращали внимание на любопытную особенность равенств:
2 + 2 = 4
2 x 2 = 4
Это единственный пример, когда сумма и произведение двух целых чисел (и притом равных) одинаковы.
Вам, однако, быть может, неизвестно, что существуют дробные числа (правда, не равные), обладающие тем же свойством: