Выбрать главу

 (1)

Но количество кинетической энергии, как я уже упоминал, можно измерить температурой T. Поэтому в формуле (1) можно вместо Е поставить Т (я также изменю постоянную, чтобы получилось правильное число в тех единицах измерения, которыми нам предстоит пользоваться). Итак,

 (2)

Если в этой формуле температуру Т брать в градусах Кельвина, а массу частицы m — в атомных единицах масс, то средняя скорость частиц v получится в километрах в секунду.

Рассмотрим, например, некий объем газообразного гелия. Он состоит из отдельных атомов гелия, причем масса каждого из них равна 4 в атомных единицах. Пусть его температура равна температуре таяния льда (273°К). Тогда в формуле (2) на место Т станет число 273, а на место m — число 4. Подсчитав результат, мы узнаем, что средняя скорость атомов гелия при температуре таяния льда равна 1,31 км/сек.

Так же вычисляются скорости при других значениях Т и m. Скорость молекул кислорода (масса равна 32) при комнатной температуре (300°К) равна , то есть 0,48 км/сек, скорость молекул двуокиси углерода (масса 44) при температуре кипения воды (373°К) равна 0,46 км/сек и так далее.

Формула (2) говорит нам, что при любой данной температуре чем легче частица, тем быстрее она движется. Она также показывает, что при абсолютном нуле (T = 0) скорость любого атома или молекулы, каковы бы ни были их массы, равна нулю. Это еще один путь убедиться в абсолютности абсолютного нуля. Абсолютный нуль — это точка абсолютного (почти абсолютного) покоя атомов и молекул.

Но если нулевая скорость молекул и атомов — нижний предел температуры, то нет ли у нее и верхнего предела? Разве скорость света, о чем мы уже говорили в начале статьи, не является верхним пределом скорости? Когда температура поднимается так высоко, что v в формуле (2) достигнет скорости света и уже не сможет подняться выше, разве мы не достигнем абсолютной вершины, где настолько горячо, что уж горячее быть не может? Давайте предположим, что так и есть, и посмотрим, что из этого получится.

* * *

Перепишем формулу (2) так, чтобы можно было подсчитывать прямо. У нас получится

T = 40mv2. (3)

Коэффициент 40 нужно брать только в том случае, когда мы пользуемся шкалой Кельвина для температуры и километрами и секундами для скорости.

Возьмем величину скорости молекул v сразу равной максимальной возможной скорости, то есть 299 779 км/сек — скорости света. Тогда мы получим, по-видимому, максимально возможную температуру (Tмакс).

Тмакс = 3 600 000 000 000 m. (4)

Но теперь нужно знать величину m (массу частиц). Чем выше значение m, тем выше максимальная температура.

А при температурах, исчисляемых миллионами градусов, все молекулы и атомы рассыпаются, остаются голые ядра. При температурах в сотни миллионов градусов уже возможны реакции слияния простых ядер в сложные. При еще более высоких температурах должен происходить обратный процесс: все ядра должны развалиться на простые протоны и нейтроны.

Итак, надо думать, что где-то около максимально возможной температуры (а она, по-видимому, лежит далеко за триллионом градусов) существуют только свободные протоны и нейтроны. Их массы в атомной шкале равны единице. Таким образом, с точки зрения формулы (4) мы делаем вывод, что максимально возможная температура равна 3 600 000 000 000°К.

Но действительно ли мы должны принять этот вывод?

Увы, надо признаться, что во всем доказательстве начиная уже с формулы (3) была ошибка. Я предполагал, что значение m постоянно, то есть если уж атом гелия имеет массу, равную 4, то он сохраняет ее неизменной при любых обстоятельствах. Вообще так и было бы, если бы взгляды Ньютона на Вселенную были абсолютно правильны. Но в ньютоновской Вселенной нет такой вещи, как максимальная скорость, и, следовательно, температура не может иметь верхнего предела.

В эйнштейновском понимании Вселенной верхний предел скорости установлен, следовательно, есть и надежда определить верхний предел температур, но масса, по Эйнштейну, не постоянна. Масса любого предмета (какой бы ничтожной при обычных условиях она ни была, лишь бы нулевой) растет с повышением скорости, становясь бесконечно большой в пределе при скорости света (коротко это можно записать так: «Масса становится бесконечно большой при световой скорости»). При обычных скоростях, скажем не более нескольких тысяч километров в секунду, масса возрастает настолько незначительно, что добавку к обычной массе покоя учитывают разве что в самых точных расчетах.