Наверно, астронавты будущего при полете к дальним планетам будут просто проскакивать зону астероидов, так ничего и не увидев. И лишь в редких случаях совсем не страшный крик: «Виден астероид» — заставит космических туристов ринуться к иллюминаторам.
Не следует думать, что астероиды равномерно распределены по всей зоне малых планет (так называют в астрономии астероиды. — Ред.). Там имеются и скопления их, и практически пустые области.
И то и другое обусловлено сильным воздействием притяжения Юпитера на другие тела солнечной системы.
Когда астероид во время своего движения подходит к Юпитеру (который тоже движется по определенной орбите) на самое близкое расстояние, гравитационное воздействие Юпитера на астероид достигает максимума. При этом максимальном гравитационном воздействии смещение астероида с обычной орбиты (возмущение) тоже становится максимальным.
В обычных условиях смещение астероидов в сторону Юпитера происходит в различных точках их орбит. Из-за довольно большой вытянутости и значительных наклонений орбит большинства астероидов максимальное сближение их с Юпитером происходит в различных точках орбит, и иногда астероид смещается вперед, иногда — назад, иной раз — вниз, а иной раз — вверх. В конце концов эти возмущения компенсируют друг друга и астероиды движутся по орбитам, которые колеблются возле некой постоянной средней орбиты.
А что, если астероид движется вокруг Солнца в среднем на расстоянии 480 миллионов километров? Период обращения его будет равен тогда примерно 6 годам, а Юпитер делает полный оборот за 12 лет.
После максимального сближения Юпитера и астероида в какой-то момент времени Юпитер сделает за 12 лет один оборот вокруг Солнца, а астероид — два, и оба тела придут к тем же точкам максимального сближения. Это будет повторяться каждые 12 лет. После каждого нового оборота астероид будет смещаться в одном направлении. Возмущения перестанут компенсировать друг друга, а начнут складываться.
Но если Юпитер будет каждый раз подтягивать астероид к себе во время максимального сближения с ним, то астероид постепенно перейдет на орбиту, более далекую от Солнца, и год его удлинится. Период обращения уже не будет совпадать с периодом обращения Юпитера, и возмущения перестанут складываться. И наоборот, если бы астероид постепенно вышел на более близкую к Солнцу орбиту, год его стал бы короче, он не совпадал бы с годом Юпитера и возмущения опять-таки перестали бы складываться.
В общем ни один астероид не остается в той части зоны, где период обращения равен как раз половине периода обращения Юпитера. Любой астероид, который сначала находился там, смещается в ту или другую сторону: на прежней орбите он не остается.
То же самое можно сказать и о том районе зоны, в котором астероид имел бы период обращения 4 года, потому что через каждые три оборота он встречался бы с Юпитером в одном и том же месте. Если бы астероид имел период обращения 4,8 года, то эта же картина повторялась бы через каждые пять оборотов и так далее.
Районы зоны астероидов, которые были «очищены» Юпитером, известны под названием «пустот Кирквуда». Их назвали так в честь американского астронома Даниэля Кирквуда, который в 1876 году обратил внимание на эти пустоты и объяснил причины их возникновения.
Именно этим объясняется, что у Сатурна несколько колец, а не одно.
Кольца были открыты голландским ученым Христианом Гюйгенсом в 1655 году. Ему казалось, что Сатурн окружен сплошным светлым кольцом, нигде не касающимся планеты. Однако в 1675 году французский астроном Джиованни Доменико Кассини (родом из Италии) заметил темную щель, делившую кольцо на широкую и светлую внутреннюю часть и на более узкую и менее светлую внешнюю часть. Эту щель шириной 4800 километров с тех пор стали называть «щелью Кассини».
В 1850 году американский астроном Джордж Филлипс Бонд «подсмотрел» у Сатурна и третье кольцо, довольно тусклое и расположенное еще ближе к планете. Из-за своей тусклости оно было названо креповым кольцом. Креповое кольцо отделено от среднего, яркого кольца щелью шириной 1600 километров.