Альтернативным является предположение, что верхняя атмосфера состоит главным образом из атомов кислорода, которое требует разработки модели взаимодействия с солнечным ветром для обеспечения согласия с ионосферными данными и выявления процесса, обусловливающего большую нетепловую диссипацию атомов водорода. Такого рода предположение можно согласовать с данными по свечению верхней атмосферы. Для обеих планет остается нерешенной проблема теплового баланса термосфер.
Важные результаты в этом направлении получены М. Н. Изаковым и С. К. Морозовым [3, 4]. На основе численного интегрирования системы гидродинамических уравнений с учетом источника тепла за счет поглощения солнечной ультрафиолетовой радиации и стоков тепла, обусловленных инфракрасным излучением атмосферы и отводом тепла теплопроводностью в нижние слои атмосферы, в работе [4] построена модель суточных вариаций температуры, плотности и ветров в экваториальной зоне Марса в период равноденствия.
Основным упрощением модели является рассмотрение двухмерной термосферы лишь в экваториальной плоскости при пренебрежении меридиональным растеканием. Поскольку рассматривается сравнительно тонкий слой атмосферы (75–200 км), для этого слоя приняты постоянные значения ускорения силы тяжести, теплоемкости, теплопроводности и вязкости, взятые для высоты, соответствующей середине слоя. Предполагается, что термосфера состоит из чистого углекислого газа, но получены также оценки с учетом присутствия 25% аргона.
Вычисления показали, что марсианская мезопауза располагается на высотах 90–100 км, где находится максимум стока тепла за счет радиационного выхолаживания и температура составляет около 150 К. Вертикальный профиль температуры становится примерно изотермическим на высотах более 170 км на дневной и 140 км — ночной стороне планеты. На высоте 200 км плотность изменяется в суточном ходе в 5 раз, а температура — от 280 до 430 К. Последнее хорошо соответствует наблюдаемой температуре около 340 К при той же умеренно высокой солнечной активности, рассмотренной в расчетах.
При отсутствии горизонтального переноса нагревание атмосферы происходит от восхода до захода Солнца, тогда как ветры несколько уменьшают амплитуду солнечно обусловленных вариаций температуры и сдвигают как максимум, так и минимум на более раннее время. Уменьшение амплитуды суточного хода температуры (примерно в 1,5 раза) вызывают и вертикальные движения, что, по-видимому, обусловлено влиянием адиабатического нагревания и охлаждения. Для поля ветра характерно наличие ночью горизонтальной составляющей (порядка 100 м/с), направленной в основном в сторону вращения планеты, а днем (при скорости до 150 м/с) — в противоположную сторону. Учет наличия аргона привел к изменению температуры, достигающей 20 К.
Выше упомянуты лишь некоторые аспекты исследований состава и физики верхних атмосфер Венеры и Марса, выявляющие необходимость дальнейшего изучения состава и строения атмосфер при помощи наиболее надежных средств прямых измерений. Обратимся теперь к детальному обсуждению предварительных результатов, полученных при помощи АМС «Викинг-1, -2».
Осуществлению двух миссий по программе АМС «Викинг» целью которой были исследования атмосферы и поверхности Марса путем вывода двух орбитальных аппаратов на орбиты искусственных спутников Марса (ИСМ) и посадка двух спускаемых аппаратов (СА) на поверхность планеты, предшествовали длительные поиски наиболее подходящих районов посадки.
1. Поиски мест посадки
Поиски мест посадки для АМС «Викинг-1, -2» были тесно связаны с общей проблемой топографии поверхности Марса. Билле и Феррари [19] на основе использования данных радиорефракционных, наземных радарных, спектральных и оптических измерений, а также применения методики Фурье-анализа (учтены гармоники вплоть до двенадцатой) определили основные параметры глобальной топографии Марса. Согласно [19], средний радиус планеты составляет 3389,91 ±0,009 км, а средняя плотность равна 3,9332±0,0018 г/см3. Центр фигуры Марса смещен относительно центра масс на 2,92±0,25 км. Топографическая сплющенность составляет (—3,994±0,077) ·10-3 и равна сплющенности, обусловленной гравитационными факторами и вращением планеты, если принять угловую скорость вращения 77 580 с (21 ч 33 мин), которая сильно отличается от наблюдаемой угловой скорости, что свидетельствует о значительном нарушении гидростатического равновесия. Этот факт побуждает выразить сомнения относительно надежности всех полученных ранее оценок момента инерции Марса, поскольку они основаны на использовании уравнения Дарвина—Радау, предполагающего гидростатическое равновесие.