Выбрать главу

Другими словами, для вирусов не существует какого-то абсолютно обязательного закона сезонности: это следствие главным образом устоявшихся социальных практик, а климатические колебания играют второстепенную роль. С SARS-CoV-2 у нас все практики поломались, поэтому «обычного для вирусов» поведения ожидать не стоит — по крайней мере в первые месяцы его знакомства с человечеством. И тем не менее многие продолжают верить в некие объективные климатические факторы, которые могут ослаблять или усиливать распространение вируса в разное время года. Например, СМИ и даже некоторые эксперты заявляют, что летом в России неблагоприятная для вирусов влажность воздуха. Такое обобщение, как водится, некорректно. Отношения вирусов и этого параметра сложны и не до конца поняты. Так, вирусы, у которых нет мембраны, лучше всего чувствуют себя во влажном воздухе. А покрытые мембраной (вроде нашего SARS-CoV-2 и его родственников), наоборот, сохраняют активность дольше в сухой, но не слишком, среде. Например, время полужизни безобидного коронавируса hCV 229E при температуре 20 °C и относительной влажности воздуха 80 % составляет три часа, при 50 % — 67 часов, при 30 % — уменьшается до 27 часов[70]. Почему так — точно неизвестно.

Одна из гипотез связывает влажность с размером капелек жидкости, в которых плавают вирусные частицы. Чем выше влажность, тем капли медленнее высыхают и их размер оказывается в среднем больше. А значит, больше и поверхность раздела двух сред — воды и воздуха. Вирусные частицы как бы стягиваются к границе, и из-за повышенного поверхностного натяжения в этой зоне их внешняя оболочка повреждается. Однако при низких температурах (авторы проводили опыты при 6 °C) ситуация меняется на обратную и время полужизни hCV 229E при относительной влажности 80 % составляет 86 часов, а при 50 % — пугающие 106 часов. Предполагается, что в холоде липидная мембрана вируса затвердевает, обеспечивая лучшую сохранность внутренностей вирусной частицы.

На большей части территории России максимальная влажность воздуха наблюдается зимой и составляет в европейской части 83–86 %, в Западной Сибири — 78–81 %, в Восточной Сибири — 71–77 %. Летом на большей части страны влажность колеблется от 50 до 70 %. Так что рассчитывать на помощь воды или ее отсутствия в воздухе ни зимой, ни летом не приходится. А вот температура может сыграть роль: как мы только что упомянули, на холоде липидная оболочка некоторых вирусов затвердевает и уплотняется, повышая их устойчивость к внешним воздействиям[71]. В лабораторных экспериментах при 4 °C SARS-CoV-2 сохранялся гораздо дольше, чем при комнатной температуре[72]. Да и в целом ученые держат вирусы, с которыми работают, не в термостате, а в холодильнике и даже в морозилке. В одной из работ авторы, исследовавшие безобидную разновидность коронавируса, установили, что патоген сохраняет активность даже после 25 циклов заморозки при –72 °C и последующего оттаивания[73]. Так что вряд ли суровые сибирские зимы смогут существенно помешать распространению SARS-CoV-2. Тем более что основную часть времени коронавирус все равно проводит внутри людей, где температура составляет комфортные 37 °C.

Еще один фактор окружающей среды, который теоретически мог бы ослабить вирус, — ультрафиолет. Эти лучи несут большое количество энергии и действительно способны разрушать ДНК и РНК, но с ультрафиолетом, исходящим от Солнца и достигающим поверхности Земли, не все так просто. УФ-спектр разделяют на три диапазона: A (самый мягкий, диапазон 320–400 нм, UVA), B (средней «злобности», диапазон 280–320 нм, UVB) и C (жесткий, диапазон 200–280 нм, UVC). Стерилизующими свойствами в полной мере обладает только ультрафиолет C, но он практически полностью поглощается озоновым слоем и кислородом земной атмосферы. Как UVC воздействует на новый коронавирус, пока не известно, но его эффективность в отношении SARS зависела от массы различных факторов: дозы и времени воздействия, степени распространения вируса, среды, в которой он находится[74], — и это в лаборатории. В реальной жизни на сохранность вируса, очевидно, будет влиять еще множество других условий. И тем не менее, некоторые основания полагать, что большое количество солнечных дней SARS-CoV-2 может не понравиться, у нас есть: например, вирус гриппа на свету (правда, не настоящем солнечном, а воссозданном в лаборатории) умирает быстрее[75]. Другое дело, что на большей части территории России погода часто ясная как зимой, так и летом — разница есть, но не слишком значительна (хотя москвичам или петербуржцам и тяжело в это поверить).

вернуться

70

M. K. Ijaz, A. H. Brunner, S. A. Sattar, R. C. Nair, and C. M. Johnson-Lussenburg, «Survival Characteristics of Airborne Human Coronavirus 229E», J. Gen. Virol., vol. 66, no. 12, pp. 2743–2748, Dec. 1985.

вернуться

71

I. V. Polozov, L. Bezrukov, K. Gawrisch, and J. Zimmerberg, «Progressive ordering with decreasing temperature of the phospholipids of influenza virus», Nat. Chem. Biol., vol. 4, no. 4, pp. 248–255, Apr. 2008.

вернуться

72

Там же.

вернуться

73

A. Lamarre and P. J. Talbot, «Effect of pH and temperature on the infectivity of human coronavirus 229E», Can. J. Microbiol., vol. 35, no. 10, pp. 972–974, Oct. 1989.

вернуться

74

J. G. B. Derraik, W. A. Anderson, E. A. Connelly, and Y. C. Anderson, «Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable PPE protocol using a double-hit process», medRxiv, p. 2020.04.02.20051409, Jan. 2020.

вернуться

75

M. Schuit et al., «The Influence of Simulated Sunlight on the Inactivation of Influenza Virus in Aerosols», J. Infect. Dis., vol. 221, no. 3, pp. 372–378, Jan. 2020.

полную версию книги