Эволюция этих двух альтернативных типов поведения фагов – литическая репликация и лизогения – должны давать преимущества в выживании линии фага. Ключевым для этого преимущества является принятие правильного решения: лизировать клетку или ограничиться лизогенией. Какая тактика обеспечивает большую вероятность достижения цели вируса – распространения его генов? Для того чтобы принять это решение, вирус кодирует механизм переключения генов, который способен улавливать состояние клетки-хозяина после инфицирования. Если клетка имеет метаболический отпечаток быстро растущей здоровой популяции, то фаг предпочтет литическую репликацию. Такая стратегия обеспечивает быстрое размножение вируса и высвобождение его многочисленных потомков во внеклеточную среду, где высоки шансы встретить такую же здоровую клетку, которую можно атаковать, инфицировать и лизировать. С другой стороны, если вирус «чувствует», что инфицированная им клетка не склонна к быстрому делению, или если вокруг много других вирусов, стремящихся инфицировать ту же клетку, то он может выбрать умеренную стратегию и ограничиться лизогенией, включив свой геном в клеточную хромосому. В таких условиях это оптимальная стратегия, потому что литическая репликация в клетке, которая является частью увядающей популяции, может привести к высвобождению потомков вируса в среду, где мало пригодных к инфицированию клеток. Все будет потеряно, и вирусные частицы будут томиться в окружающей среде до самой своей гибели. Лучше сидеть тихо и передавать генетическую информацию следующим поколениям одной и той же клетки. Эта стратегия не приводит к быстрому размножению и увеличению количества вирусных частиц, но зато способствует сохранению генетического материала.
В любом случае, как у хорошего иллюзиониста, у профага есть в рукаве и иная тактика выживания. Как можно судить по самому названию, профаг может стать родоначальником фага и вступить в цикл вирулентной репликации. Если клетка, в которой имела место лизогения, испытывает какой-либо стресс и рискует погибнуть, то профаг улавливает ситуацию и принимается спасать от гибели свой геном. Бактерии обычно реагируют на стрессогенные ситуации в окружающей среде стандартными запрограммированными ответами. Особенно важным фактором активации профага является стрессовая реакция клетки на повреждение ее ДНК (Ptashne, 2004). Эта реакция заставляет профаг переключать репрессированное дремлющее состояние в состояние вирулентной репликации: вирусный геном мобилизуется, особые ферменты вырезают вирусный геном из бактериальной хромосомы, и геном восстанавливает свою репликативную форму. Профаг экспрессирует продукты гена фага, отвечающие за репликацию ДНК, после чего начинается сборка новых инфекционных вирусных частиц. Фаг успевает реплицироваться до того, как погибает клетка-хозяин. Несмотря на ненадежность шансов, потомки реплицированного фага высвобождаются, чтобы дожидаться встречи с новой подходящей клеткой-хозяином, то есть возможности новой репликации.
В популяции бактериальных клеток, в которых произошла лизогения, – в лизогенах – каждая клетка содержит в своей хромосоме копию одного и того же профага. Индукция профагов происходит с высокой частотой, если популяция подвергается стрессу, что приводит к массированному разрушению клеточной популяции. Однако в растущей здоровой популяции профаги индуцируются спонтанно с очень низкой частотой. Лабораторные исследования показывают, что на 10 000 бактериальных клеток происходит одна индукция фага в каждом поколении клеток. Несмотря на то что такая спонтанная и редкая индукция является смертельной для отдельно взятой клетки-хозяина, мы все же можем заключить, что популяция лизогенированных клеток может получать пользу от присутствия профагов.
Какими же могут быть преимущества, перевешивающие риск от присутствия в клетке такой отравленной пилюли? Одно из объяснений заключается в том, что лизогены защищены от инфицирования сходными, родственными фагами. Та же репрессивная функция, которая поддерживает устойчивое существование профага, предотвращает литическую репликацию проникшей в профаг вирусной частицы. Таким образом, фаги, высвобождаемые в результате индукции, не могут атаковать генетически идентичные лизогены, но могут инфицировать не лизогенированные или другие восприимчивые клетки. Более того, фаги, вызывающие лизогению клеток, часто привносят в нее гены, кодирующие белки, полезные для клетки. Такое явление называют конверсией фага. Разумно предположить, что лизогения в целом оказывает благотворное влияние на клеточную популяцию. Популяция лизогенных клеток как целое повышает свою приспособляемость и становится более успешной. Это преимущество, обеспечиваемое фагом, намного перевешивает вред, причиняемый индукцией и гибелью незначительного меньшинства клеток популяции.