Преимущество этого способа получения противополиомиелитной вакцины очевидно. Живые клетки в культуре ткани образуют большую поверхность для размножения вируса. Способы его очищения несложны. Все это позволяет получать прививочный материал в очень большом количестве. Благодаря этому открытию стало возможным выращивать вирусы на культурах самых разнообразных тканей самых разных животных.
В последнее время ученые с успехом начали выращивать в питательных растворах изолированные клетки опухолей человека, и сейчас трудно найти крупную вирусологическую лабораторию, которая не располагала бы, к примеру, клетками HeLa, выделенными из оперированной злокачественной опухоли матки, или клетками Detroit 6, также являющимися клетками опухоли человека.
Рассказ о современных методах изучения вирусных частиц был бы не полным, если бы мы не остановились — хотя бы коротко — на таком важном средстве научного исследования, каким является кинематограф.
Научная кинодокументация
Биологи, микробиологи и вирусологи все чаще и шире используют в своих исследованиях микрокиносъемку как важный метод научной кинодокументации. Вот как оценивает его доктор Рудольф Мюллер из Института микробиологии и экспериментальной терапии ГДР: "Научный фильм становится все более незаменимым в микробиологии. Поскольку объекты микробиологии бесконечно малы и требуют для изучения специальной аппаратуры, фильм в этом случае оказывается идеальным наглядным пособием. Вместе с тем кино обрело в микробиологии широкую сферу применения также и как средство исследования. При всяких чисто морфологических исследованиях научный фильм может служить дополнительным подтверждающим материалом, расширяющим наши познания"[7]
Следует признать, что уже давно учёные оценили помощь, которую могут оказать в их работе огромные технические возможности современного кинематографа. Можно назвать сотни научно-исследовательских кинодокументаций, в которых была успешно применена микрокиносъемка, позволившая открыть и изучить многие стороны жизни невидимого простым глазом микромира.
В научном кинематографе широкое применение находит и другой метод — цейтраферная съемка. Он заключается в том, что после съемки каждого кадра делается пауза. В современном звуковом кино съемка производится со скоростью 24 кадра в секунду. С такой же скоростью проходит кинолента в проекционном аппарате. Совпадение частоты съемки с частотой проекции обеспечивает нормальную скорость движения на экране. Но если в 1 с снимать не 24 кадра, а всего 1 и демонстрировать результаты съемки с обычной скоростью, движение, естественно, покажется ускоренным в 24 раза. Еще более ускорится движение, если снимать по одному кадрику в минуту, час или с еще большими временными интервалами. Что же дает науке метод цейтраферной съемки?
В литературе часто приводится следующий пример: цветок тюльпана распускается в течение 5 ч, т. е. 300 мин или 18 000 с. Если снимать процесс распускания цветка на протяжении всего времени, понадобится 24 X 18 000 = 432 000 кадриков, что составит ленту длиной свыше 8 км. Показ такой ленты продлится те же 5 ч, причем на экране мы не заметим интересующего нас постепенного раскрытия лепестков цветка.
Попробуем применить цейтраферную съемку и снимать по одному кадрику с интервалом в 1 мин. Весь процесс распускания тюльпана "уложится" всего в 300 кадриков и будет демонстрироваться всего 12,5 с!
Приведенный пример достаточно убедительно показывает, насколько метод покадровой съемки позволяет "уплотнить" время при медленно протекающих процессах. Сочетая цейтраферную съемку с микросъемкой, ученые получают возможность наблюдать на экране увеличенную в сотни тысяч раз жизнь микромира с любым, необходимым для исследования, увеличением.
Но как использовать огромные возможности кинематографа в вирусологии? Ведь объектив кинокамеры должен фиксировать динамику процессов, подлежащих изучению. Это вполне осуществимо в микробиологии, где сочетание киносъемочного аппарата с микроскопом позволяет получать ценнейшие кинодокументы о жизни микроорганизмов, пребывающих в постоянном движении... А как быть с вирусами, которые видны только в электронный микроскоп, дающий статичное изображение? Электроннограммы, хотя и используются в научных фильмах, но остаются пока еще неподвижными фотографиями. Можно только мечтать о том времени, когда ученые смогут "оживить" электронный микроскоп и сочетать его с кинокамерой. Какие возможности откроются тогда перед вирусологами!
Но и сегодня кинометод все же находит применение при вирусологических исследованиях. По образному выражению У. Стенли и Э. Вэленса, "невидимая вирусная частица становится видимой благодаря действию, которое она оказывает, подобно тому, как мы говорим, что видим далекий пожар, тогда как в действительности мы наблюдаем только столб дыма".