Вирусы можно сравнить с яблоками. Яблоко, лежащее на столе, не может себя продублировать и превратиться в два яблока – то же самое относится и к вирусу. Яблоку нужна земля, чтобы стать яблоневым деревом, дающим новые яблоки. Яблоки ведь живые? А как же вирусы? Может ли в данном случае чем-то помочь Чарлз Дарвин? Он считал, что жизнь, возможно, зародилась в «маленьком теплом пруду», и предполагал, что сначала все было просто, на этом его предположения закончились. Вирусу нужен пруд или хотя бы пробирка – среда с питательными веществами для репликации и производства потомства. Вирусы – просто организованные организмы. Поэтому они более «живые», чем камни, а вот камни действительно неживые. Как это ни странно, некоторые вирусы способны к агрегации и образованию симметричных квазикристаллических структур, которые чрезвычайно стабильны, резистентны к теплу и в этом смысле действительно напоминают камни. У кристаллов неправильной формы может даже сохраняться неправильное сворачивание, что почти напоминает репликацию. Так же могут себя вести, например, некоторые белковые агрегаты в тканях головного мозга – например, прионы. Может быть, у них есть нечто схожее с вирусами? Предполагаю, что да, и мы увидим это далее.
Бактерии принято считать живыми микроорганизмами. Они обладают способностью к делению и, таким образом, к самовоспроизведению, а, что самое главное, они синтезируют белок. Синтез белка считается важным пограничным маркером, разделяющим живое и неживое. Бактериям тоже нужны поступающие извне питательные вещества, то есть они не полностью независимые микроорганизмы. Кроме того, они вовсе не так просты! Не существует биологического «вечного двигателя» – механизма, способного работать без помощи энергии. Но источником энергии необязательно является клетка. При отсутствии солнечных лучей это может быть энергия химических реакций, как в случае с «черными курильщиками», находящимися на дне океана.
К великому удивлению, недавно обнаруженные гигантские вирусы содержат компоненты, необходимые для синтеза белка. Они очень похожи на живые бактерии, являясь «квазибактериями». Соответственно гигантские вирусы также называют мимивирусами, поскольку они, похоже, мимикрируют под бактерии. Будучи почти бактериями, эти гигантские вирусы являются хозяевами для более мелких вирусов, которые реплицируются внутри них. Все это вызвало чрезвычайно сильное раздражение у классических вирусологов, поскольку гигантские вирусы никак не вписываются в устоявшиеся представления о вирусах и их определения. Открытие этих вирусов в 2013 г. было прокомментировано в журнале Nature с точки зрения места вирусов в процессе возникновения жизни. В этом материале указывалось, что гигантские вирусы нужно поместить в основание древа жизни – вот на что надеялись ученые, открывшие этот вирус! В самом начале не было клеток и мимивирусов – и те, и другие слишком большие по сравнению с вирусами, поэтому они не могли быть у истоков жизни. Вероятно, ранние вирусы не нуждались в клетках. Это довольно смелое заявление и единственное, что не очень вписывается в мое утверждение «Сначала были вирусы». Современные вирусы нуждаются в клетках, но, возможно, это результат длительной эволюции. На самом деле существуют вироиды, «голые молекулы РНК», способные к репликации и эволюции, которые, возможно, изначально не зависели от клеток, как сейчас. Они могут делать все это как в пробирке Джойса – без клеток. Их можно было бы назвать «голые вирусы».
Вирусы – изобретатели и поставщики генетических инноваций. Они формируют наши геномы. Я так считаю и готова повторить это много раз, это мое кредо, мое «ceterum censeo»[5].
Вирусы действительно внесли свой вклад в образование клеток. Это очевидный факт, а не предположение. Современные вирусы – паразиты, они зависят от клеток. Вирус-паразит может передать свои функции хозяину и покинуть его с меньшим количеством генов, чем если бы он был сам по себе или ему приходилось бы выживать вне клетки-хозяина. Все выявляемые в настоящее время вирусы – паразиты, зависящие от клеток. Эволюция идет не только от простых структур к сложным, она может идти и в обратном направлении. Сложные структуры могут становиться проще, могут терять гены, делегировать свои функции и становиться специализированными. В зависимости от условий окружающей среды способности могут быть приобретены или утрачены. Примером тому служат митохондрии. Подождите, вот дойдем до последней главы этой книги!
5
Часть фразы «Ceterum censeo Carthaginem esse delendam» (