Почему же одного типа РНКазы Н достаточно для ВИЧ, когда организму человека необходимо три? Существует следующий принцип: чем более высокоорганизован организм, тем он сложнее. Клеточной РНКазе Н в организме млекопитающих приходится выполнять дополнительные функции, которые распределяются на несколько белков. И невыполнение одной функции имеет фатальный исход, «эмбриональную смерть».
Часто приходится наблюдать, что мультибелковые комплексы у млекопитающих играют определенную роль в эмбриогенезе. У ВИЧ нет эмбрионов, и поэтому достаточно простой РНКазы Н. Однако РНКаза Н, называемая PIWI, играет чрезвычайно важную роль в сайленсинге (особенно в стволовых клетках), направленном на предотвращение «перепрыгивания» генов (так называемые двигающиеся ретротранспозоны). Таким образом, PIWI (вместе с некоторыми РНК) защищают наш геном и необходимы для обеспечения фертильности семенной жидкости.
РНКаза Н диверсифицирует свои функции путем комбинирования различных строительных блоков в модулирующем режиме. Слияние РНКазы с большим количеством различных доменов обусловливает появление новых функций. Все ферменты сами по себе обладают способностью к расщеплению, но где, когда и как эта способность проявляется, зависит от партнера по слиянию. Известно примерно 10 таких партнеров. И обратная транскриптаза – лишь один из них. Она тянет за собой РНКазу Н (которая выполняет функцию нуклеазы, расщепляющего фермента) вдоль РНК, и, когда обратная транскриптаза останавливается или «спотыкается», РНКаза, используя возникшую паузу, делает разрез (). Вызывает удивление существование большого количества РНКаз Н, выполняющих неожиданные функции. Я изучала вирусную РНКазу Н несколько десятилетий и, возможно, отношусь к этому вопросу очень предвзято. Многие другие функции были выявлены позднее благодаря новым технологиям секвенирования. Меня весьма удивило, что РНКаза встречается чаще всего и является самой древней структурой в мире белков, а по распространенности превосходит даже ОТ. Об этом свидетельствуют результаты недавно проведенного филогенетического анализа, основанного на последовательностях генов, определенных Густаво Каэтано-Аноллесом из Иллинойского университета (Урбана). Везде, где есть нуклеиновые кислоты, нужны и «ножницы», чтобы вырезать или «выключить» нуклеиновые кислоты. РНКазы имеют целый ряд обозначений, в частности Drosha, Argonaut, Cas9 и PIWI. РНКаза Н и обратная транскриптаза – одни из наиболее важных компонентов для развития и формирования целостности геномов – это относится и к нашему геному, и к геномам других видов. Я говорю это не только потому, что РНКаза Н и обратная транскриптаза – основная тема моих исследований. Это действительно правда!
Теломераза и вечная жизнь
Можно ли жить вечно? Древнейшая мечта человечества – жить вечно. Возможно ли это? Да, возможно. Существуют клетки, способные жить вечно, этот факт меня очень удивил. К сожалению, это опухолевые клетки. Все клетки нашего организма живут недолго и даже меньше, чем организм в целом. В течение жизни все клетки постоянно восполняются стволовыми клетками. Но это не касается раковых клеток. Практически во всех лабораториях есть клеточная линия HeLa, которой уже более 60 лет. Клетки HeLa – рабочие лошадки для многих исследователей. Источник их происхождения – карцинома шейки матки женщины, которую мы обычно называем Хелен Ланге, хотя на самом деле ее звали Генриетта Лакс: афроамериканка, мать пятерых детей, умершая в возрасте 31 года от карциномы шейки матки. В 1951 г. эти клетки поместили в культуру и вырастили – до этого процедура не удавалась. Вероятно, эта опухоль была агрессивно растущей. В настоящее время наследники Генриетты предъявляют претензии и заявляют, что ничего не знали о ее клетках. Этой теме посвящаются телепередачи, а в 2010 г. появилась новая книга – «Бессмертная жизнь Генриетты Лакс»[10]. Геном клеток секвенировали, и родственников Генриетты беспокоит, что может появиться информация о генетических особенностях, может быть, даже дефектах, носителями которых они могут являться. С тех пор результаты, касающиеся данной клеточной линии, сообщаются финансирующим организациям. Однако мне представляется маловероятным, что клетки после примерно 6000 пассажей в нестандартизированных условиях остались прежними. Будет много хромосомных изменений. Мне кажется удивительным, что опухолевые клетки могут жить «вечно». Почему бы им не существовать чуть дольше, чем обычным клеткам пациентов, но почему вечно? (В лабораторных условиях, конечно, но все же!) Как опухолевые клетки могут жить вечно? Можно ли, основываясь на результатах исследования этих клеток, получить представление о долговечности без развития рака? В интервью меня часто спрашивают, какие еще клетки живут вечно. Наши зародышевые клетки переходят из одного поколения в следующее – значит ли это, что они бессмертны? А стволовые клетки – как долго они могут существовать? Им нужна соответствующая ниша, поэтому возраст и возможности долгожительства зависят еще и от внешних условий. Мелкие животные типа жуков жили «тихонечко» долго и сохраняли жизнеспособность в течение 40 лет в условиях глубокой заморозки при –20 °С.