Шаг 15 Хорошенько рассмотрите окно X Axis Settings (рис. 5.6) и подумайте, какие шаги вы должны будете предпринять, если возникнет вышеописанная ситуация.
Для графического изображения частотных характеристик часто используют двойное логарифмическое масштабирование осей координат, при котором ось Y также форматируется логарифмически. Чтобы провести такое форматирование для диаграммы частотной характеристики фильтра нижних частот, действуйте следующим образом.
Шаг 16 Установите на диаграмме, если вы этого еще не сделали, логарифмическую ось 16 координат частоты, щелкнув по кнопке .
Шаг 17 Выберите логарифмическую координатную ось Y, щелкнув в меню Plot по строке Y Axis Settings…, а затем маркировав в окне Y Axis Settings опцию Log (Логарифмический (масштаб)). Посмотрите, как изменилась диаграмма. Переформатирование оси Y можно провести быстрее, если просто щелкнуть по соответствующей этой команде кнопке, на которой изображена стилизованная логарифмическая ось Y.
5.2. Линейное и логарифмическое распределение контрольных точек
В этом и следующем разделах мы будем исследовать влияние сопротивления R на частотную характеристику RC-фильтра нижних частот. Вам потребуется провести моделирование схемы сначала при значении сопротивления R=80 Ом, а затем при R=1000 Ом и графически представить полученные результаты в программе PROBE. При этом выяснится, что бывает рациональное и нерациональное распределение рассчитываемых контрольных (опорных) точек.
Для решения поставленной задачи выполните следующие следующие шаги.
Шаг 18 Откройте схему последовательного включения резистора и емкости RC_AC.sch (если она еще не открыта), измените значение сопротивления резистора на R=80 Ом и сохраните схему в папке Projects под именем RC_80.sch.
Шаг 19 Проведите предварительную установку для проведения анализа AC Sweep в частотном диапазоне от 10 Гц до 999 кГц для 10000 точек (см. рис. 5.2).
Шаг 20 Запустите процесс моделирования, а затем создайте в PROBE диаграмму частотной характеристики напряжения конденсатора V(C1:2) с линейным масштабированием координатной оси Y и логарифмическим масштабированием координатной оси X (рис. 5.8).
Рис. 5.8. Частотная характеристика RC-фильтра нижних частот с конденсатором емкостью С=2 мкФ и резистором сопротивлением R=80 Ом
Шаг 21 Измените в RC-фильтре нижних частот значение сопротивления резистора на R=1 кОм и сохраните измененную схему в папке Projects под именем RC_1000.sch.
Шаг 22 Запустите процесс моделирования, используя те же предварительные установки, что и для схемы RC_80.sch (см. рис. 5.2).
Шаг 23 Представьте графически частотную характеристику напряжения конденсатора V(C1:2) с линейным масштабированием координатной оси Y и логарифмическим масштабированием координатной оси частоты, как показано на рис. 5.9.
Рис. 5.9. Частотная характеристика RC-фильтра нижних частот, где R=1000 Ом и С=2мкФ
Тот, кто хоть немного знаком с фильтрами нижних частот, сразу увидит, что эта диаграмма частотной характеристики неверна. Излом не может начинаться при частоте около 100 Гц. И вы наверняка уже догадываетесь, почему произошла ошибка: PSPICE просчитал слишком мало точек. В ходе предварительной установки вы равномерно распределили 1000 точек в частотном диапазоне от 10 Гц до 999 кГц, то есть на каждые 100 Гц приходится по одной точке. Программа PSPICE произвела расчет первой точки при частоте 10 Гц, а следующей точки — при частоте 110 Гц. Затем программа PROBE соединила обе эти точки линейной связью. Ничего хорошего из этого получиться, разумеется, не могло.
Для того чтобы вам было легче разобраться в таких ситуациях, в PROBE предусмотрена опция, с помощью которой вы можете вызвать индикацию контрольных точек.
Шаг 24 Откройте меню Tools (Инструменты) и щелкните по строке Options…, чтобы вызвать на экран окно Probe Options (рис. 5.10).
Рис. 5.10. Окно Probe Options
Среди прочих в этом окне находится опция Mark Data Point (Отметить контрольные точки), при выборе которой маркируются информационные точки (рис. 5.11).
Рис. 5.11. Диаграмма частотной характеристики RC-фильтра нижних частот с маркированными контрольными точками
Шаг 25 Выберите эту опцию, а затем убедитесь в том, что включать и выключать маркировку контрольных точек можно также с помощью кнопки , соответствующей этой команде.
Теперь стало очевидно, что рассчитанные программой PSPICE контрольные точки нерационально распределены для создания диаграммы с логарифмическим масштабированием оси X. Было бы разумно логарифмически распределить и контрольные точки, например рассчитать равное количество точек для каждой декады. И программа PSPICE предоставляет вам эту возможность.
Шаг 26 Откройте еще раз окно AC Sweep and Noise Analysis (рис. 5.12).
Рис. 5.12. Окно AC Sweep and Noise Analysis с установками для равномерного (линейного) распределения точек в частотном диапазоне от 10 Гц до 999 кГц
В разделе AC Sweep Туре (Тип AC Sweep) маркирована опция Linear (Линейный), следовательно, в ходе анализа контрольные точки рассчитываются линейно, то есть с равными интервалами частоты на координатной оси X с линейным масштабированием. Это было бы рационально при линейном масштабировании координатной оси X, но при логарифмическом масштабировании совершенно не нужно.
Шаг 27 Задайте для предстоящего анализа декадное распределение контрольных точек, выбрав опцию Decade (Декадный). Сразу вслед за этим правая часть окна изменится таким образом, чтобы вы имели возможность указать, какое количество точек следует рассчитать в каждой декаде (рис. 5.13). Введите в поле Pts/Decade (Точки/декады) цифру 100, что составит в целом 500 точек на 5 декад.
Рис. 5.13. Окно AC Sweep and Noise Analysis, где задано равномерное распределение контрольных точек по отдельным декадам
Раньше PSPICE приходилось просчитывать 10000 точек, то есть в двадцать раз больше. И, соответственно, на вычисления уходило в двадцать раз больше времени, а результат при этом, как вы сами видели, был крайне неубедительным.
Шаг 28 Запустите процесс моделирования с новыми установками и затем выведите на экран PROBE диаграмму напряжения на конденсаторе V(C1:2) — см. рис. 5.14.