Выбрать главу

Программа PSPICE позволяет приписывать допуски параметрам компонентов. И тогда в ходе одного анализа Монте-Карло одна и та же схема может моделироваться («прогоняться») до двадцати тысяч раз: каждый раз с новым набором параметров, заданным по принципу случайной выборки. Затем отдельные результаты оцениваются программой PSPICE по тем критериям, которые вы заранее оговариваете во время предварительной установки анализа. Например, определяется максимальное отклонение напряжения от его номинального значения, то есть от того значения, какое имело бы это напряжение, если бы все компоненты точно соответствовали своим номинальным параметрам.

Диаграммы, создаваемые на основе результатов анализа Монте-Карло, особенно наглядны, когда, к примеру, на одной общей диаграмме изображаются результаты всех прогонов, совершенных при моделировании схемы, то одного взгляда бывает достаточно, чтобы определить чувствительность схемы к допускам компонентов. На одну диаграмму PROBE могут быть одновременно выведены данные о 399 прогонах анализа Монте-Карло.

Программа PSPICE позволяет проводить анализ Монте-Карло в сочетании с анализом DC Sweep, AC Sweep и с анализом переходных процессов. В ходе моделирования первый прогон анализа Монте-Карло всегда является «номинальным», то есть при нем все компоненты имеют свои номинальные значения.

PSPICE предоставляет в ваше распоряжение все необходимые инструменты для установки разброса значений. Так, например, вы можете выбрать функцию распределения. По умолчанию программа PSPICE предлагает равномерное распределение (опция Uniform) в рамках заданного диапазона допуска. Также возможно Гауссово распределение (опция Gaussian) или любое другое, определяемое пользователем (опция User Defined). Это открывает фантастические возможности перед профессиональными разработчиками, занимающимися проектированием схем для массового производства. Однако в учебном курсе достаточно будет рассмотреть только равномерное распределение параметров разброса, уже установленное в PSPICE по умолчанию.

Еще одна хитрость этого анализа состоит в том, что вы можете выбирать, следует ли в процессе моделирования варьировать каждый параметр, которому присвоено значение разброса, независимо от других или нужно изменять вместе группу параметров, например группу резисторов сопротивлениями 1 Ом. Такая возможность очень важна при моделировании интегральных схем. В этом случае характеристике допуска присваивается кодовое обозначение LOT, например LOT=5%. В нашем учебном курсе мы не будем пользоваться кодовым обозначением LOT. В приводимых примерах все параметры определяются независимо друг от друга, что является разумным при использовании отдельных (дискретных) компонентов. В этом случае допуск получает кодовое обозначение TOL, например TOL=5%.

В качестве примера исследуем с помощью вероятностного анализа Монте-Карло схему активного фильтра с высокой крутизной фронта. Такие схемы чрезвычайно чувствительны к разбросам параметров компонентов.

Шаг 18 Начертите схему активного полосового фильтра, изображенную на рис. 9.32, и сохраните свой чертеж в папке Projects под именем BP_AKT.sch. Обратите внимание на то, какой «трюк» был использован при ее проектировании, чтобы не слишком загромождать чертеж шинами питания. Зажимные компоненты, которые здесь применены, называются Bubble и находятся в библиотеке PORT.slb. Если дважды щелкнуть мышью по одному их таких компонентов, откроется окно, где вы можете дать компоненту имя (здесь: V+ и V-). Компоненты Bubble с одинаковыми именами считаются электрически связанными друг с другом.

Рис. 9.32. Схема активного полосового фильтра с двумя операционными усилителями uA741

Шаг 19 Создайте на экране PROBE диаграмму частотной характеристики, изображенную на рис. 9.33, с помощью обычного анализа AC Sweep.

Рис. 9.33. Частотная характеристика активного полосового фильтра

Эта частотная характеристика имеет такие крутые фронты, что знаток наверняка задастся вопросом, сохранит ли эта схема свои качества даже при небольших разбросах параметров компонентов.

Шаг 20 Задайте всем резисторам 1% допуска. Для этого действуйте следующим образом:

1. Маркируйте все резисторы, поочередно щелкая по ним и удерживая при этом клавишу Shift.

2. Выберите в меню Edit опцию Attributes….

3. В окне, которое затем откроется (рис. 9.34), вы должны подтвердить свое намерение одновременно изменить атрибуты всех маркированных компонентов (глобально).

Рис. 9.34. Окно, где следует подтвердить намерение глобально редактировать атрибуты

4. Откроется окно Global Edit Attributes (рис. 9.35).

Рис. 9.35. Окно Global Edit Attributes для одновременного редактирования нескольких атрибутов

5. Какие атрибуты являются общими для маркированных компонентов (ведь это непременное условие для того, чтобы вы смогли изменить их все вместе), вы узнаете, щелкнув по кнопке Browse… и открыв окно Select Attribute (рис 9.36).

Рис. 9.36. Окно Select Attribute с указанием доступных для одновременного изменения атрибутов

6. Отметьте строку TOLERANCE= (Допуск) и подтвердите свой выбор щелчком по кнопке OK. После этого вновь откроется окно Global Edit Attributes.

7. Введите в поле Value требуемое значение допуска, в данном случае 1% (рис. 9.37), и подтвердите ввод, щелкнув по кнопке OK. Теперь на чертеже появился индикатор только что установленного вами допуска.

Рис. 9.37. Окно Global Edit Attributes с установленными для всех резисторов допусками в размере 1%

Шаг 21 Аналогичным образом задайте для всех конденсаторов допуск 2%.

Шаг 22 Откройте окно Analysis Setup, установите флажок рядом с кнопкой Monte Carlo/Worst Case… (Анализ Монте-Карло/Наихудшего случая) и щелкните по ней. Откроется окно Monte Carlo or Worst Case с установками для проведения анализа Монте-Карло (рис. 9.38).

Рис. 9.38. Окно Monte Carlo or Worst Case

Шаг 23 Проведите в этом окне предварительную установку, как показано на рис. 9.38. В ходе моделирования будет проведено десять прогонов анализа Монте-Карло (опция МС Run) на основе анализа AC Sweep (опция Analysis Туре). Все настройки в разделе Function оставьте без изменения. Они имеют значение только для выходного файла и в данный момент не представляют для вас интереса. В поле Output Var вы должны ввести, какую величину следует понимать как выход. Это также нужно только для выходного файла, тем не менее, если в поле не будет указано никакого значения, PSPICE откажется проводить анализ Монте-Карло. Выберите в списке MC Options (Опции анализа Монте-Карло) опцию All, чтобы вам были предоставлены данные всех десяти прогонов как в PROBE, так и в выходном файле.