Рис. 13.9. Схема трехфазного тока с полной компенсацией реактивной мощности за счет подключения при t=100 мс трех конденсаторов емкостью 100 мкФ каждый
Рис. 13.10. Перекомпенсация за счет подключения трех конденсаторов емкостью 200 мкФ каждый
13.3. Активные фильтры
Шаг 1 Существует много способов реализации активных фильтров. Все они имеют одно общее свойство: их трудно рассчитывать. В данном разделе будет произведен расчет параметров фильтра путем проведения серии испытаний.
Возьмем за основу, пожалуй, наиболее распространенную структуру активного фильтра, а именно универсальный фильтр, изображенный на рис. 13.11.
Рис. 13.11. Универсальный фильтр, реализованный с помощью сумматора и двух интеграторов
В зависимости от того, какое место схемы определяется в качестве выхода, он работает как фильтр верхних частот, фильтр нижних частот или как полосовой фильтр.
Для случая, когда все резисторы и все конденсаторы имеют одинаковые значения, необходимо выяснить, какое значение следует задать для постоянной времени t=RC, чтобы получить фильтр нижних частот с граничной частотой 1 кГц. После проведения серии испытаний было найдено подходящее значение сопротивления R=15 кОм (рис. 13.12).
Рис. 13.12. Частотная характеристика фильтра нижних частот; R=15 кОм и С=10 нФ; граничная частота находится на уровне значения 1 кГц
Анализ переходных процессов (рис. 13.13) позволил выявить один недостаток этой схемы: выходное напряжение сдвинуто по фазе по отношению к входному напряжению на 180°. Для многих применений это не является помехой. Но если вы намерены решить с помощью предложенной схемы какую-либо фазочувствительную проблему, то вам придется включить после выхода фильтра еще один инвертирующий усилитель. К сожалению, такой случай вы уже не сможете смоделировать с помощью демонстрационной версии PSPICE, так как пришлось бы установить в одной схеме четыре операционных усилителя uA741. В виртуальной лаборатории spicelab есть упрощенная модель этого усилителя, благодаря чему вы сможете моделировать схемы, содержащие до пяти подобных элементов. На случай, если и этого окажется недостаточно, в spicelab есть также модель идеального операционного усилителя. Как известно, такой усилитель имеет бесконечно высокое усиление, бесконечно высокое входное сопротивление и выходное сопротивление, равное 0 Ом. При расчетах схем с операционными усилителями почти всегда исходят именно из этих значений, и в большинстве случаев их вполне достаточно и для моделирования. Вы сможете установить в одной схеме немало таких идеальных усилителей, прежде чем столкнетесь с ограничениями демонстрационной версии.
Рис. 13.13. Входное и выходное напряжение фильтра нижних частот; напряжения сдвинуты по фазе
13.4. Минимизация шума усилителя
Вклады отдельных компонентов усилителя в полный шум существенно различаются. Поэтому при проектировании усилителя очень важно выявить те компоненты, участие которых наиболее значительно. В разделе 9.2 вы изображали на экране PROBE полный шум V(ONOISE) усилительного каскада (рис. 9.18). Если вы выберете в окне Add Traces опцию NOISE(V2/HZ), то сможете найти в списке диаграмм под обозначением NTOT<имя компонента> составляющие полного шума отдельных компонентов, а под обозначением NTOT(ONOISE) — действующее значение полного шума. На рис. 13.14 эти диаграммы изображены для выходного МОП-транзисторного каскада (см. рис. 11.2).
Рис. 13.14. Анализ шума выходного МОП-транзисторного каскада
На диаграмме отчетливо видно, что компонент R3 вносит решающий вклад в полный шум усилителя. Сопротивление R3 определяет верхнюю граничную частоту входного фильтра, препятствуя тем самым попаданию высокочастотных помех на вход усилителя. Если уменьшить вдвое значение R3 (до 470 Ом) и увеличить вдвое значение С3 (до 2.2 нФ), то характеристика входного фильтра останется неизменной. Результат соответствующего анализа шума показан на рис. 13.15.
Рис. 13.15. Шум выходного МОП-транзисторного каскада с измененным входным фильтром
Полный шум уменьшился практически вдвое. По-прежнему компонент R3 является основным источником шума, что дает разработчику почву для дальнейших доработок. Однако — обратите внимание — в результате всех вмешательств эта схема не потеряла устойчивости.
Глава 14
PSPICE и техника автоматического регулирования
Эта глава откроет перед вами окно в мир фантастических возможностей, которые предоставляет программа PSPICE при моделировании регулируемых цепей.
PSPICE обладает непревзойденной гибкостью при конструировании сложнейших регулируемых цепей и располагает обширным аналитическим аппаратом программы PROBE для оценки и сравнения результатов различных алгоритмов регулирования. Конечно, следующие разделы не смогут познакомить вас со всеми возможностями PSPICE для проведения исследований в области автоматического регулирования. Но, ознакомившись с предлагаемым материалом, вы должны войти во вкус и дальше самостоятельно продолжить работу в этом направлении.
14.1. Регулируемые участки
Фрагмент электронной схемы, обладающий переходной характеристикой типа РТ1, является реализацией одного из наиболее распространенных в технике регулирующих алгоритмов. Техническая установка обладает PT-характеристикой, когда возбуждение установки на входе приводит к замедленной реакции на выходе. Задержки создаются энергонакопителями (реактивными элементами, такими как термонакопители или конденсаторы), которые оказывают влияние на потоки энергии, проходящие через эту установку. В зависимости от количества действующих энергонакопителей различают регулируемые участки типов PT1, PT2, PT3 и т.д.
14.1.1. PT1-участок
В технике автоматического регулирования поведение регулируемых участков описывается двумя различными способами: с помощью переходной характеристики и с помощью асимптотической диаграммы.
Рассмотрим PT1-участок PT1_st из библиотеки MISC.slb (рис. 14.1). Этот участок возбуждается источником импульсного напряжения VPULSE с амплитудой 1 В.
Рис. 14.1. PT1-участок с источником напряжения VPULSE
В начале и в конце этого регулируемого участка есть по одному уязвимому для помех месту. Так как переходная характеристика должна быть смоделирована без помех, оба входа zin и zout установлены на 0 В. В результате анализа переходных процессов этой схемы (от 0 до 10 с) была получена переходная характеристика PT1-участка (рис. 14.2).
Рис. 14.2. Переходная характеристика РТ1-участка после подачи на вход ступеньки напряжения высотой 1 В
Одновременное изображение частотной и фазовой характеристики PT1-участка при синусоидальном возбуждении называется асимптотической диаграммой. Фазовую характеристику вы сможете получить, отметив в правой части окна Add Traces оператор Р(), с помощью которого изображается положение по фазе какой-либо величины. Так, например, чтобы получить положение по фазе напряжения V(R1:2), вы должны ввести в строку Trace Expression следующую запись: P(V(R1:2)). Самый простой способ сделать это — щелкнуть мышью сначала по оператору P(), а затем по обозначению V(R1:2). На рис. 14.3 изображена асимптотическая диаграмма PT1-участка при синусоидальном возбуждении на входе с помощью источника напряжения VSIN. На диаграмме отчетливо видны два важных свойства, которыми обладает этот PT1-участок: при той частоте, когда выходное напряжение падает до 70.7%, сдвиг по фазе между входным и выходным сигналом составляет -45°. Максимально возможный сдвиг по фазе PT1-участков составляет -90°.