Любая машина, работая, тратит энергию. Виды энергии различны: тепловая, электрическая, химическая. Но принцип: работа – энергия, остаётся неизменным.
Расход, энергии должен восполняться. В двигателе внутреннего сгорания сжигаются всё новые порции горючего. На гидроэлектростанции падающая вода вращает турбины, механическая энергия переходит в электрическую. В атомном котле тепло рождается в процессе непрерывного распада радиоактивных элементов.
Если внутри человека не смонтирован вечный двигатель, то энергия, которую он тратит, также должна восстанавливаться. Роль топлива в человеческом двигателе выполняют пищевые продукты: мясо, масло, сахар. Или, в переводе на язык химии, – белки, жиры, углеводы. При их окислении выделяется энергия. Она-то и даёт возможность Ивану Ивановичу медленно пройтись по комнате, взглянуть в окно, щёлкнуть портсигаром…
Правда, наш двигатель работает несколько иначе (и проще, и сложнее), чем обычные тепловые. Возьмём для сравнения паровую машину. Сгорание угля – химическая реакция соединения углерода и водорода с кислородом. При реакции выделяется теплота – химическая энергия переходит в тепловую. Теплота нагревает воду, превращает её в пар. Пар приводит в движение поршень – тепловая энергия преобразуется в механическую. Итак, прежде чем начать работать, «двигать», химическая энергия проходит через лишнюю ступень – тепловую.
В человеческой машине этой ступени нет. Химическая энергия клеток переходит непосредственно в механическую – вызывает сокращение мышц, возбуждение нервных окончаний, торможение. Процессы, из которых в конечном счёте складывается вся деятельность человека: от удара ногой по мячу до создания научной теории.
Реакции, идущие в организме, многообразны. С энергетической точки зрения особенно важны окислительные реакции – соединение углерода, водорода и других элементов пищи с кислородом. Именно эти реакции дают организму основную часть энергии.
Если спросить шофёра, что нужно для нормальной работы двигателя, он сразу ответит: «горючее». Подумав, он назовёт ещё смазочное масло, воду. О кислороде он, вероятно, и не вспомнит, хотя кислорода двигатель «съедает» больше, чем бензина и масла. Но воздух ничего не стоит, его расход не учитывается.
А мы учтём. В обычных условиях человек за сутки вдыхает не меньше 12 кубических метров воздуха. И «съедает» примерно 2 кубометра (около 3 килограммов) кислорода. Количество достаточно солидное.
Куда девается этот кислород? В окислении участвуют двое: то, что окисляется, – топливо, и то, что окисляет, – окислитель. Оба они одинаково важны.
Человеческий организм имеет большие запасы «топлива» (хотя бы жира). Но резервов окислителя в нём нет. Поэтому без еды человек может жить около трёх месяцев, а без кислорода лишь несколько минут.
Конструктор, которому поручили бы спроектировать двигатель человека, оказался бы в трудном положении. С одной стороны, необходимо обеспечить герметичность внутренних органов и тканей – преградить доступ к ним посторонних веществ из внешней среды. С другой, нужно обеспечить подачу в двигатель топлива и окислителя, отвод продуктов сгорания – углекислого газа и паров воды.
Не знаю, как решил бы эту задачу конструктор. Природа справилась с ней блестяще.
Особенно тонко и остроумно сконструирован механизм снабжения организма кислородом и отвода продуктов сгорания. Механизм состоит из двух основных узлов: внешнего и внутреннего. Внешний устроен довольно просто и напоминает обычный газопровод (рот, нос, дыхательное горло, трахеи, бронхи). Он соединяет лёгкие с внешней средой, атмосферой, откуда засасывается воздух и куда удаляются продукты сгорания.
Внутренний узел имеет гораздо более сложную и хитрую конструкцию. В лёгких размещены тончайшие пузырьки – альвеолы. Их тут великое множество – около 700 миллионов; общая их площадь колоссальна – почти 90 квадратных метров (для сравнения: площадь поверхности человеческого тела – 2 квадратных метра). Такие размеры выбраны не случайно. Альвеолы – «обменный пункт», в них происходит обмен газами между лёгкими и кровью. Обмен этот должен происходить почти мгновенно, на ходу, – для этого и нужна большая площадь.
Столь же высоким требованиям должен удовлетворять другой участник обмена – кровь. Главная часть крови – эритроциты, красные кровяные тельца. Их количество в крови огромно – около 25 триллионов.
Цепочкой из эритроцитов человека можно трижды обмотать по экватору земной шар. Эритроциты буквально набиты зёрнами гемоглобина – белка, имеющего чрезвычайно сложное молекулярное строение. По самым
скромным предположениям, формула гемоглобина имеет вид – C712H1130N214O245S2Fe.
Кровь – жидкость, и естественно, что кислород в ней растворяется. Однако в сравнительно скромных количествах. В крови (а её у человека около 5 литров) растворяется лишь 0, 0165 литра кислорода. За минуту кровь совершает примерно три оборота и, следовательно, может передать тканям только 0, 05 литра кислорода. А человек даже во сне потребляет в минуту 0, 3 литра, при тяжёлой же работе нужда в кислороде достигает 4 – 6 литров.
Где же выход? В свойствах гемоглобина. Гемоглобин обладает способностью вступать с кислородом в химическую реакцию. Образуется оксигемоглобин. В таком, связанном, виде кровь переносит основную часть кислорода. Легко соединяясь с кислородом, гемоглобин так же легко отдаёт его клеткам.
Взамен кислорода гемоглобин получает «отработанный» в клетках углекислый газ и выносит его к альвеолам. Здесь происходит новый обмен. Гемоглобин расстаётся с углекислым газом и приобретает кислород. Чтобы снова отдать его клеткам.
Ясно, что главная «деталь» внутреннего узла – обменный пункт, альвеолы. Внутри альвеол – воздух, богатый кислородом. Снаружи – кровь, в которой много углекислоты. Между ними тонкая стенка, перегородка. Через неё должен быть произведён обмен. Сложная задача. Стенка мешает. Убрать её? Но тогда кровь хлынет в лёгкие. Нет, стенка нужна. Но стенка особой конструкции. Непроницаемая для жидкостей и твёрдых частиц, она должна свободно пропускать газы.
Именно так и решил задачу великий конструктор – природа. Теперь уже подобные стенки (их называют обычно полупроницаемыми перегородками) начинают применяться и в технике. Но создателем их является природа – не будем забывать автора…
Итак, на обменный пункт прибыла тёмно-вишнёвая венозная кровь, несущая продукты окисления – углекислоту, пары воды. Она омывает тонкие стенки альвеол. Там, в альвеолах, воздух, богатый кислородом. Молекулы газов, летящие во всех направлениях, «прошивают» перегородку. Происходит постепенное (а в конечном счёте очень быстрое, ибо площадь альвеол огромна) выравнивание состава. Часть альвеолярного кислорода поступает в кровь; продукты сгорания проникают в альвеолы и при выдохе уходят в атмосферу.
С обменного пункта кровь следует дальше, к клеткам. Теперь она алого цвета. У неё и название другое, светлое – артериальная кровь. Сердце – бесперебойный насос – качает и качает её, чтобы самые отдалённые ткани получили кислород. Ведь кислород – это жизнь.
В конструкции человеческого двигателя есть ещё одно, очень интересное и важное устройство. Оно напоминает современные системы автоматического управления. Это устройство регулирует «внешнее» дыхание.
Допустим, меня что-то заинтересовало: футбольный матч или партия в шахматы. Я так увлёкся, что смотрю на поле (или на доску) «разинув рот». Хочется пить, но мне не до того. В азарте я забыл даже, что надо делать вдох и выдох – дышать.
Что произойдёт? Альвеолярный воздух после каждого обмена становится всё беднее кислородом и богаче углекислым газом. Наконец настанет момент, когда обмен прекратится. Артериальная кровь станет такой же тёмной, как венозная, такой же бедной кислородом. Она пойдёт к клеткам, но ей нечего будет им дать, она не сможет ничего получить взамен. Клетки задохнутся в продуктах сгорания, наступит смерть.