Повышение точности требовало большего количества вычислений. В конце концов инженеры начали заменять механические шестеренки в первых компьютерах электрическими зарядами. В первых электрокомпьютерах использовалась вакуумная трубка - металлическая нить накаливания, похожая на лампочку, заключенную в стекло. Электрический ток, проходящий через трубку, можно было включать и выключать, выполняя функцию, не похожую на движение бусинок абакуса вперед-назад по деревянному стержню. Включенная трубка кодировалась как 1, а выключенная - как 0. Из этих двух цифр можно было получить любое число, используя двоичную систему счета, а значит, теоретически можно было выполнять многие виды вычислений.
Более того, вакуумные лампы позволили перепрограммировать эти цифровые компьютеры. Механические шестеренки, такие как в бомбардировщике, могли выполнять только один тип вычислений, поскольку каждая ручка была физически связана с рычагами и шестеренками. Бусины на абакусе были ограничены стержнями, по которым они двигались вперед-назад. Однако соединения между вакуумными трубками можно было реорганизовать, что позволяло компьютеру выполнять различные вычисления.
Это был скачок в развитии вычислительной техники, или он был бы скачком, если бы не мотыльки. Поскольку вакуумные трубки светились как лампочки, они привлекали насекомых, что требовало от инженеров регулярной "отладки" . Кроме того, как и лампочки, вакуумные трубки часто перегорали. Современный компьютер ENIAC, созданный для армии США в Пенсильванском университете в 1945 году для расчета артиллерийских траекторий, состоял из восемнадцати тысяч вакуумных трубок. В среднем одна трубка выходила из строя каждые два дня, что приводило к остановке всей машины и заставляло техников метаться в поисках и замене вышедшей из строя детали. ENIAC мог перемножать сотни чисел в секунду, быстрее, чем любой математик. При этом он занимал целую комнату, поскольку каждая из его восемнадцати тысяч трубок была размером с кулак. Очевидно, что технология вакуумных трубок была слишком громоздкой, слишком медленной и слишком ненадежной. До тех пор пока компьютеры будут представлять собой чудовища, изъеденные молью, они будут полезны только в таких нишевых приложениях, как взлом кодов, если только ученым не удастся найти более компактный, быстрый и дешевый коммутатор.
Глава 2. Выключатель
Уильям Шокли давно предполагал, что если удастся найти лучший "выключатель", то это будет сделано с помощью материалов, называемых полупроводниками. Шокли, родившийся в Лондоне в семье горного инженера-путешественника, вырос среди фруктовых деревьев в сонном калифорнийском городке Пало-Альто. Будучи единственным ребенком, он был абсолютно убежден в своем превосходстве над всеми окружающими и давал всем это понять. Он поступил в колледж при Калифорнийском технологическом институте в Южной Калифорнии, затем защитил докторскую диссертацию по физике в Массачусетском технологическом институте и начал работать в Bell Labs в Нью-Джерси, которая в то время была одним из ведущих мировых центров науки и техники. Все его коллеги считали Шокли несносным, но при этом признавали, что он был блестящим физиком-теоретиком. Его интуиция была настолько точной, что один из коллег Шокли сказал, будто может реально видеть электроны, когда они проносятся по металлам или соединяют атомы вместе.
Полупроводники - область специализации Шокли - представляют собой уникальный класс материалов. Большинство материалов либо свободно пропускают электрический ток (например, медные провода), либо блокируют его (например, стекло). Полупроводники отличаются от них. Сами по себе полупроводниковые материалы, такие как кремний и германий, подобны стеклу, практически не проводящему электрический ток. Но при добавлении определенных материалов и приложении электрического поля ток может начать течь. Например, добавление фосфора или сурьмы к полупроводниковым материалам, таким как кремний или германий, позволяет протекать отрицательному току.
"Легирование" полупроводниковых материалов другими элементами открыло возможность создания новых типов устройств, способных создавать электрические токи и управлять ими. Однако освоение движения электронов по полупроводниковым материалам, таким как кремний или германий, оставалось далекой мечтой до тех пор, пока их электрические свойства оставались загадочными и необъяснимыми. Вплоть до конца 1940-х годов, несмотря на все усилия физиков, накопленные в Bell Labs, никто не мог объяснить, почему пластины полупроводниковых материалов ведут себя столь загадочным образом.