Технология Stealth необходима для защиты от обнаружения радиолокационными, оптическими и другими системами объектов является приоритетной национальной программой Америки, в развитии которой решающую роль играет нанотехнология. Перспективное применение нанотехнологии в создании покрытий для технологии Стелс заключается в том, чтобы сделать объекты как можно более незаметными. Именно наноматериалы в виде наносфер могут быть использованы в так называемых плазмонных устройствах, выступающих в качестве плаща-невидимки[138]. Такого рода устройства, которые могли бы действовать, подобно настоящему плащу-невидимки, должны скрывать любой объект и охватывать все частоты видимого света. Понятно, что создать такое устройство весьма сложно, однако многие физики считают, что это вполне возможно. «В 2006 г. Джон Пендри из Лондонского имперского колледжа показал, что теоретически оболочка из метаматериала могла бы изменить пути проходящих через нее электромагнитных волн, отклоняя их от находящейся внутри нее сферической области»[139]. В принципе создать настоящий плащ-невидимку вроде бы невозможно, тем не менее, широкий спектр возможностей использования нанотехнологии для создания технологии Stealth привлекает исследователей.
Необходимо иметь в виду то существенное обстоятельство, согласно которому новейшие нанотехнологии могут представлять угрозы для безопасности социума и человека, о чем предупреждает Центр Надежных Технологий (Centre for Responsible Nanotechnology, CRN). Понятно, что с внедрением нанотехнологий угрозы терроризма и криминала возрастают многократно, поэтому значительное место в материалах Центра уделяется опасностям, связанным с гонкой вооружений и террористическими угрозами. Ссылаясь на Д. Джеремиа, в свое время вице-председателя комитета начальников объединенных штабов США, эксперты Центра предупреждают, что «нанотехнологическое оружие способно радикально изменить баланс сил, в большей степени, чем даже ядерное оружие»[140]. Действительно, аэрокосмическая техника будет изготовляться без применения металла и не сможет обнаруживаться радарами. Встроенные молекулярные компьютеры смогут активировать на расстоянии любой вид оружия. Компактные источники энергии улучшат возможности боевых роботов, способных находить незащищенных людей и впрыскивать им яды. Вместе с молекулярным производством появляется возможность создания устрашающе эффективного оружия, например, устройств размером с мельчайшее насекомое (около 200 микрон), способных находить незащищенных людей и впрыскивать им яды. Летальная доза токсина ботулизма составляет 100 нанограммов и занимает около 1/100 объема всего устройства. 50 млрд. несущих токсин экземпляров оружия – количество, достаточное чтобы убить каждого человека на Земле. Оно может быть упаковано в одном кейсе[141]. Государственные расходы США на цели применения нанотехнологий для национальной обороны превышают ассигнования на фундаментальные исследования по нанотехнологии. В 2002 г. на базе Массачусетского Технологического Института (MIT) был создан так называемый институт солдатских нанотехнологий (Institute for Soldier Nanotechnologies). Для работы в этом институте привлечены 150 профессоров и сотрудников MIT, а также исследователи из лабораторий Du Pont, Dow Corning, Carbon Nanotechnologies и др. Главные задачи ISN – это создание систем Future Force Warrior System (к 2010 г.) и Vision 2020 Warrior System (к 2020 г.), превращающих солдата в облегченную, передвижную, полностью защищенную, роботизированную стреляющую платформу[142]. В общем, в США в качестве основных направлений применения нанотехнологий в военных целях намечены следующие[143]:
1) Создание легких и высокопрочных материалов для самолетов, кораблей, подводных лодок и спутников, включая «интеллектуальные» материалы и материалы по технологии stealth.
2) Создание высокочувствительных и селективных сенсоров на электромагнитное излучение, ядерную радиацию, на химические и биологические вещества.
3) Совершенствование информационных и коммуникационных систем за счет миниатюризации и увеличения производительности логических устройств, систем памяти и пр.
4) Производство дистанционно управляемых роботов для обращения с токсическими и взрывчатыми веществами.
5) Автоматизация систем и различных платформ вооружения с обеспечением полной безопасности оператора.
140
Цит. по: Минкин В.И. Наступает ли век нанотехнологий? Важнейшие нанотехнологические проекты и ожидаемые риски // Горизонты нанохимии 21 столетия. Ростов-на-Дону. 2009. С. 58.
141
См. Минкин В.И. Наступает ли век нанотехнологий? Важнейшие нанотехнологические проекты и ожидаемые риски // Горизонты нанохимии 21 столетия. Ростов-на-Дону. 2009.