Воздушно-космическо-морская оборона наиболее развитых стран станет непременно общегосударственной. Можно предвидеть, что она будет включать космическую и воздушную системы раннего предупреждения о взлете и полете воздушных носителей высокоточных крылатых ракет вероятного противника, сверхдальние воздушные перехватчики воздушных и морских носителей до рубежа пуска ими крылатых ракет, а также специальные зенитные ракетные комплексы сверхдальнего нерадиолокационного обнаружения, скоростного перехвата воздушных носителей крылатых ракет.
Зенитные ракетные комплексы должны будут иметь высокую огневую производительность за счет многоканальности по цели и малому времени реакции. Количество одновременно поражаемых воздушными сверхдальними перехватчиками и зенитными ракетными средствами воздушных носителей высокоточного оружия, летающих со сверхзвуковой скоростью на любых высотах (10-50 тыс. м), в прогнозируемый период скорее всего может возрасти в 10-15 раз, а время реакции, вполне вероятно, сократится в 8-10 раз по сравнению с существующими нормами при борьбе с пилотируемыми средствами нападения над обороняемой территорией. Следует ожидать создания зенитных ракетных комплексов, не использующих активную радиолокацию, способных одновременно поражать на любых возможных высотах 150-200 воздушных носителей до пуска ими высокоточных крылатых ракет (на дальностях 1,5-2 тыс. км от государственных границ).
Основными силами и средствами борьбы с прорвавшимися через такую воздушно-космическо-морскую оборону малозаметными высокоточными крылатыми ракетами на важнейших стратегических направлениях и маршрутах их полета, а также в районах некоторых объектов-недотрог, видимо, станет глубокоэшелонированная противокрылаторакетная оборона, а также неогневая гражданская защита практически каждого объекта экономики, о чем более подробно пойдет речь в следующей, четвертой главе.
Следует ожидать, что значительные перемены произойдут как в системах обнаружения носителей, так и системах обнаружения высокоточных ракет в полете. Вполне вероятно, что эти системы будут развиваться с использованием совершенно новых средств обнаружения наземного, воздушного и космического базирования. Они будут реализованы главным образом в пассивных локационных станциях, оптимизированных для обнаружения таких целей без излучения электромагнитной энергии. В них будут реализованы способы радиотехнической разведки, инфракрасного, теплового, телевизионного и оптического обнаружения малозаметных и летящих на предельно малых высотах крылатых ракет по излучаемым даже очень слабым радиоэлектронным сигналам и по тепловому факелу ракетного двигателя. Надо ожидать, что будет существенно повышено качество обработки сигналов. Найдут широкое применение фазированные антенные решетки, дающие возможность применять методы многочастотной пассивной локации, использовать оптимальное в каждый момент времени отношение "сигнал/шум" и повышать коэффициент направленного действия.
Средства сверхдальнего обнаружения воздушного базирования, очевидно, могут быть реализованы также в пассивных станциях самолетов дальнего нерадиолокационного обнаружения (ДНРЛО) и в аэростатных системах. Наиболее вероятно, в этих самолетах и аэростатах будут широко использованы пассивные (нерадиолокационные) методы обнаружения малозаметных, маловысотных целей с верхней полусферы. Преимущества таких методов обнаружения могут заключаться в том, что сверху крылатые ракеты менее защищены технологией типа "Стелс" и могут быть более легко обнаружены по тепловому излучению двигателя на фоне земли на большем расстоянии от средств поражения, чем наземными средствами, что повышает вероятность их поражения.
На самолетах ДНРЛО и аэростатах скорее всего найдут также применение инфракрасные обнаружители, которые будут надежно фиксировать на большой дальности полет каждого носителя и каждой крылатой ракеты по достаточно мощному тепловому излучению их двигателей. В бортовых станциях радиотехнической разведки самолетов ДНРЛО и аэростатов также, вполне вероятно, будут широко применяться новые формы сигналов с их сжатием и цифровой обработкой. Пассивные средства обнаружения космического базирования могут найти широкое применение для раннего обнаружения, прежде всего воздушных носителей высокоточных крылатых ракет с момента их взлета с заранее контролируемых аэродромов и авианесущих кораблей, а также и самих ракет в полете с момента их запуска. Космические средства обнаружения и раннего предупреждения, видимо, будут способны также выдавать целеуказания воздушным и наземным средствам пассивного обнаружения и сверхдальнего перехвата воздушных носителей еще до пуска ими высокоточных малозаметных крылатых ракет, а также точные целеуказания средствам для сверхдальнего перехвата и уничтожения этих ракет в полете.
Следует подчеркнуть, что в переходный период к войнам нового, шестого поколения (до 2007-2010 гг.) еще будут достаточно широко применяться и активные РЛС различного базирования. Однако в них скорее всего постепенно найдет широкое применение совмещение активного локатора со станцией радиотехнической разведки и комплексом пассивной локации, радиометрии, что не только увеличит вероятность обнаружения целей, но и существенно повысит скрытность работы самих средств обнаружения. В последующем активные РЛС будут заменены пассивными. Однако следует ожидать, что активные РЛС найдут широкое применение в войнах нового поколения в космической разведке.
Станции радиотехнической разведки, работающие в пассивном режиме, позволят обнаруживать источники кратковременного излучения, использующие сигналы со сложной частотно-временной структурой, а также помеховые сигналы. Они скорее всего будут применяться для оценки радиоэлектронной обстановки в районах промышленных центров, аэропортов, морских портов и контроля излучений любых радиоэлектронных станций в процессе их производства и эксплуатации. Для станций подобного типа главными информационными источниками в условиях войн нового поколения будут любые излучения бортовых радиоэлектронных средств искусственных спутников, самолетов, кораблей, крылатых ракет, их радиовысотомеров, систем "свой чужой", бортовых комплексов РЭБ, а также тепловые излучения работающих двигателей.
Получат развитие и средства огневого поражения высокоточных крылатых ракет противника, летящих к наиболее важным государственным объектам. Скорее всего, такие ракеты будут обнаруживаться и поражаться с использованием эффекта теплового излучения их маршевого двигателя. На этом принципе могут работать маловысотные зенитные противокрылаторакетные комплексы (ЗПКРК). Они будут обнаруживать и поражать цели собственными пассивными головками обнаружения и самонаведения, установленными на противоракетах, практически у самой земли, на высоте десятков метров. Для уничтожения таких целей может получить новое значительное развитие и автоматическая зенитная артиллерия (АЗА) сверхмалой дальности, имеющая пассивные средства обнаружения и оптические прицелы.
Уже в ближайшие годы начавшегося нового века на вооружение армий некоторых стран вполне вероятно начнут поступать лазерные пушки, способные поражать не только крылатые ракеты, но и реактивные снаряды. Достаточно даже самого незначительного прожига стабилизатора или планера крылатой ракеты, и набегающий поток воздуха развалит ее на части. Известно, что подобный тактический высокоэнергетический лазер разрабатывается совместно Израилем и США и его успешные испытания прошли на полигоне Уайт-Сендс в штате Нью-Мексико. Лазер уничтожил летящую ракету малой дальности, запущенную из установки российского производства "Катюша". Это действительно революционное оружие, но пока оружие поля боя. Оно имеет тактическую дальность стрельбы и недостаточно надежно работает в условиях плохой погоды [35].
Видимо, может найти применение для пассивного не радиолокационного обнаружения аэродинамических и баллистических целей в полете использование сигналов телевизионных станций и ретрансляторов, которые имеются практически во всех странах мира. Как известно, большинство из них работает в метровом диапазоне волн, и телевизионные видеосигналы являются достаточно информативными как для измерения дальности до цели, так для и измерения скорости ее полета. Здесь может быть легко реализован режим многопозиционной локации, когда цель облучается сигналом одной, скажем, наиболее близко расположенной к ней телевизионной станции, а информацию о цели извлекают другие телевизионные станции или приемники.