— Потому что именно так решаются задачи, называемые «задачами трёх тел», интегральный же метод для решения таких задач ещё недостаточно разработан.
— Скажите пожалуйста, — насмешливо произнёс Мишель Ардан, — стало быть, математики ещё не сказали своего последнего слова!
— Ну разумеется, нет, — ответил Барбикен.
— Ну что ж! Авось лунные жители довели интегральное исчисление до большего совершенства, чем вы! А кстати, что такое интегральное исчисление?
— Этот способ, противоположный дифференциальному исчислению…
— Благодарю покорно!
— Другими словами, это исчисление, дающее нам конечные величины, дифференциалы которых нам известны.
— Вот что по крайней мере понятно! — воскликнул Мишель с видом полного удовлетворения.
— А теперь, — сказал Барбикен, — дай мне кусочек бумаги, огрызок карандаша, и через полчаса я покажу тебе нужную формулу.
С этими словами Барбикен принялся за вычисления. Николь продолжал изучать в окно необозримые межпланетные пространства, предоставив Мишелю заботу о завтраке.
Не прошло и получаса, как Барбикен, подняв голову, показал Ардану бумажку, исписанную алгебраическими знаками, среди которых выделялась следующая формула:
— Что же это значит? — спросил Мишель.
— Это значит, — ответил Николь, — что одна вторая V в квадрате минус V нулевое в квадрате равно gr, помноженное на r, делённое на х, минус единица плюс m прим, делённое на m, умноженное на r, делённое на d минус х, минус r, делённое на d минус r…
— Икс плюс игрек на закорках у зета и верхом на р, — расхохотался Мишель. — И всё это тебе понятно, капитан?
— Ничего нет понятнее.
— Ну ещё бы! — сказал Мишель. — Да ведь это же ясно с первого взгляда; теперь мне больше ничего не требуется.
— Вечно ты издеваешься! — вмешался Барбикен. — Захотел алгебры, ну и получай.
— Пусть уж лучше меня повесят!
— В самом деле, — сказал Николь с видом знатока, читая формулу. — Мне кажется, эта формула совершенно правильна. Это интеграл уравнения действующих сил, и я не сомневаюсь, что она приведёт к искомому результату!
— Но я тоже хочу хоть что-нибудь понять! — вскричал Мишель. — Я готов отдать за это десять лет жизни… Николя.
— Ну так послушай, — начал Барбикен. — Половина V квадрат минус V нулевое в квадрате — это формула, дающая нам полувариацию действующей силы.
— Ну допустим. А Николь тоже понимает, что это значит?
— Конечно, Мишель, — ответил капитан. — Все эти, кажущиеся тебе каббалистическими знаки составляют собой простой, самый точный и логичный язык для тех, кто им владеет.
— И ты полагаешь, Николь, — сказал Мишель, — что при помощи таких иероглифов, ещё более непонятных, чем египетские «ибисы», ты сможешь найти начальную скорость, которую следовало сообщить снаряду?
— Безусловно, — ответил Николь. — При помощи этой формулы я смогу даже сказать тебе, с какой скоростью летит снаряд в любой точке пространства.
— Честное слово?
— Честное слово.
— Подумать только, ты, значит, учёный не хуже нашего председателя!
— Нет, Мишель. Барбикен сделал как раз самое трудное. Он нашёл уравнение, определяющее все условия задачи. Остальное — вопрос арифметики и требует только знания четырёх правил.
— Ну это действительно пустяки! — ответил Мишель Ардан, хотя ни разу в жизни не одолел ни одной задачи на сложение и называл эти упражнения «китайскими головоломками, позволяющими получать бесконечно разнообразные итоги».
Барбикен, однако, уверял, что и Николь, поразмыслив, смог бы самостоятельно найти ту же формулу.
— Не знаю, — возразил Николь, — чем больше я её изучаю, тем больше она меня восхищает.
— А теперь, — сказал Барбикен, обращаясь к своему невежественному другу, — слушай. Ты поймёшь, что все эти буквы имеют определённые значения.
— Слушаю, — смиренно сказал Мишель.
— d означает расстояние между центрами Земли и Луны, — сказал Барбикен. — Эти точки нам нужны для вычисления сил притяжения.
— Понятно.
— r
— радиус Земли.
— Радиус… Допустим.
— m
— масса Земли, а m прим — это масса Луны. Эти величины приняты в формуле потому, что притяжение тел пропорционально их массам.
— Понимаю.
— g — сила тяжести, скорость, приобретаемая телом в течение секунды при падении на поверхность Земли. Ясно?
— Как божий день!
— Буквой х я обозначил то переменное расстояние, которое отделяет нас от центра Земли, а V — скорость снаряда при данном расстоянии.
— Прекрасно!
— Наконец, скорость снаряда по выходе из атмосферы обозначим V нулевое.
— Правильно, — сказал Николь, — до этой точки и следовало вычислять скорость, так как известно, что начальная скорость в полтора раза больше той, которую снаряд сохранил при выходе из атмосферы.
— Ничего не понял! — воскликнул Мишель.
— Это же так просто! — сказал Барбикен.
— Просто, да, видно, не для меня! — ответил Мишель.
— Это значит, что когда наш снаряд достиг границы земной атмосферы, он уже потерял треть своей начальной скорости.
— Так много?
— Да, милый друг, и притом только вследствие сопротивления воздуха: трения о воздух, понимаешь? Ты представляешь себе, что чем быстрее движется снаряд, тем большее сопротивление оказывает ему атмосфера?
— Это понятно, — согласился Мишель, — это я себе представляю, но все эти ваши V нулевое и V нулевое в квадрате отскакивают от моей тупой башки как от стены горох…
— Первая естественная реакция на алгебру. Но погоди, голубчик, — сказал Барбикен, — сейчас, чтобы доконать тебя, мы вставим в эту формулу числовые значения, соответствующие каждой букве.
— Делать нечего, приканчивайте меня! — с отчаянием воскликнул Мишель.
— В этой формуле, — продолжал Барбикен, — есть величины известные, а есть и такие, которые ещё придётся вычислить.
— Этим займусь я, — сказал Николь.
— Итак, во-первых, r представляет собой земной радиус, величина которого на широте Флориды — точке нашего отправления — равняется шести миллионам трёмстам семидесяти тысячам метров; d — расстояние между центрами Земли и Луны, равное пятидесяти шести радиусам Земли, значит…
— Значит, — перебил Николь, уже успевший сделать вычисление, — это самое расстояние будет равно трёмстам пятидесяти шести миллионам семистам двадцати тысячам метров в то время, когда Луна находится в перигее, то есть в наиболее близкой точке от Земли.
— Правильно, — подтвердил Барбикен. — Далее: т прим, делённое на т, есть отношение массы Луны к массе Земли, равное одной восемьдесят первой.
— Отлично, — заметил Мишель.
— g — сила тяжести, которая во Флориде равна девяти метрам и восьмидесяти одному сантиметру; отсюда следует, что gr равно…
— Шестидесяти двум миллионам четырёмстам двадцати шести тысячам квадратных метров, — подхватил Николь.
— А дальше что? — спросил Мишель Ардан.
— А дальше, — ответил Барбикен, — когда буквы заменены числовыми величинами, я могу приступить к определению V нулевого, то есть скорости, которую снаряд должен иметь при выходе из атмосферы, чтобы с нулевой скоростью достигнуть точки равного притяжения. Итак, если в этот момент скорость должна быть равной нулю, то х будет расстоянием, на котором находится эта нейтральная точка, и может быть выражено девятью десятыми d, то есть мы получаем расстояние между двумя центрами.
— Сплошной туман, — вздохнул Мишель.
— У меня, стало быть, получится: х равно девяти десятым d и V равно нулю, а тогда моя формула примет вид…
Барбикен быстро выписал формулу:
— Так! Именно так! — вскричал Николь, жадно впиваясь глазами в формулу.
— Всё ли ясно? — спросил Барбикен.
— Чего же яснее! — воскликнул Николь.
— Ну и мудрецы! — прошептал Мишель.
— Понял ли ты, наконец? — спросил его Барбикен.
— Ещё как! — воскликнул Мишель. — Того гляди, голова треснет…
— А чтобы получить искомую скорость снаряда по выходе его из атмосферы, — добавил Николь, — остаётся только произвести вычисление.