Для более наглядного представления процесса расширения удобно ввести систему отсчета, нарисовав на шаре координатную сетку. Если бы галактики были «приклеены» к такому раздувающемуся шарику-пространству, то их координаты не изменялись бы, и расширение сводилось бы лишь к модификации свойств самой системы координат. Однако реальное расстояние между галактиками, измеряемое, например, с помощью линейки, света или радиолокатора, при этом все же увеличивается, поскольку размер линейки не изменяется при космологическом расширении, а скорость света и радиоволн не зависит от того, насколько растянулась пленка пространства-шарика. В этом плане наше пространство совсем не похоже на резиновую пленку, утончающуюся при растяжении и заставляющую упругие волны бегать по ней с возрастающей скоростью.
Согласно ОТО пространство расширяется, рождаясь как бы из ничего, в силу тех законов, которым оно подчиняется. Именно этот процесс, с учетом свойств всего того, что находится в пространстве, и описывают уравнения Гильберта — Эйнштейна. Поведение света, атомов, молекул, твердых тел, жидкостей и газов слабо зависит от локальной кривизны пространства-времени и существенно изменяется только в особо сильных гравитационных полях, наподобие тех, что встречаются вблизи черных дыр. В большей же части Вселенной, как полагают ученые, основные процессы происходят почти так же, как и на Земле, и получается, что галактики вполне реально удаляются друг от друга из-за расширения пространства, в котором они находятся. Космические корабли движутся, а свет распространяется по тому пространству, которое есть, и если его станет больше, это будет заметно, хотя бы по тому времени, которое им придется затратить, путешествуя из одной галактики в другую.
Эффект Доплера и красное смещение
В обычной жизни мы постоянно сталкиваемся с эффектом Доплера. Когда мимо несется машина с включенной сиреной, то частота ее звука меняется при движении. Этот эффект связан с обычным движением в воздухе, и величина сдвига частоты зависит от скорости источника в момент излучения. Пусть источник приближается к нам. Тогда каждый новый гребень звуковой волны будет приходить к нам раньше, чем если бы источник был неподвижен. Поэтому мы и слышим изменение тона сирены. Световой эффект Доплера несколько отличается от звукового. Однако для малых скоростей формулы для светового и звукового эффекта Доплера совпадают. В эффекте Доплера после того, как фотон испущен, с ним уже ничего не происходит. В случае космологического красного смещения дело обстоит совсем по-другому, поскольку это смещение является эффектом не специальной, а общей теории относительности и связано именно с расширением пространства.
Превращения фотона
Свет всегда излучается с некоторой определенной длиной волны и энергией кванта. Но, распространяясь в расширяющейся Вселенной, он как бы растягивается, «краснеет». В случае сжатия Вселенной наблюдался бы обратный эффект — посинение. Если когда-то давно какая-либо галактика излучила фотон с некой длиной волны, а сейчас мы его видим, как фотон с другой длиной волны, то, исходя из красного смещения, равного разности этих длин, поделенной на исходную длину волны фотона, можно сказать, во сколько раз за это время растянулась Вселенная. Для этого нужно к красному смещению прибавить единицу: если оно равно 2, то, значит, Вселенная растянулась в три раза с того момента, когда был излучен фотон.
Важно отметить, что при этом сравниваются размеры (космологи говорят о масштабном факторе) в момент излучения и в момент приема фотона. А вот то, что происходило между этими моментами, не так существенно: Вселенная могла раздаваться с постоянной скоростью, могла расширяться то быстрее, то медленнее, могла вообще в какой-то момент сжиматься. Важно только то, что за это время все космологические расстояния возросли в три раза. Именно об этом говорит красное смещение, равное 2.
«Растяжение» фотона по дороге от источника к наблюдателю принципиально отличается от обычного эффекта Доплера. Рассмотрим движущийся с некоторой скоростью космический корабль, излучающий световые волны во все стороны. В этом случае наблюдатели, находящиеся впереди корабля, будут видеть посиневшие фотоны, то есть фотоны с большей энергией, а наблюдатели позади увидят покрасневшие фотоны с меньшей энергией. В сумме же энергия всех фотонов будет неизменной — сколько джоулей корабль излучил, столько же все наблюдатели и уловили. В космологии все по-другому. Излучающая во все стороны галактика для находящихся по разные стороны (но на равном расстоянии) наблюдателей будет выглядеть одинаково покрасневшей. Хотя с точки зрения обычной логики такое рассуждение кажется странным. И в этом плане космологическое красное смещение похоже на гравитационное, при котором фотоны краснеют, преодолевая поле притяжения испустившей их звезды.