Выбрать главу

— Согласен! Но давайте разберем, как это случилось.

Ведь всякий замечал, что много есть на свете задач очень друг на друга похожих, то есть, как говорится, задач одного типа. Вот на этом-то наблюдении и родилась алгебра. Надо было еще получить некоторый толчок — догадаться, что вместо чисел можно употреблять буквы. Новое в науке родится путем наблюдения над своей собственной работой — то есть над решением разных задач, — а затем путем выводов из этих наблюдений. И, наконец, путем построения такого общего способа (или метода), который помог бы нам воспользоваться тем, что мы нашли наблюдением, а метод этот и был буквенным исчислением.

— А он откуда взялся?

— Он был в зачатках еще у египтян и у греков. Затем индусы, а за ними арабы заметили, что способы решать арифметические задачи могут быть сведены к нескольким типам — ну, хотя бы к уравнениям с одним неизвестным, — и описали это словесно. Возникла так называемая риторическая алгебра, не очень, конечно, удобная, но все-таки более совершенная по сравнению с простой арифметикой[37]. А уж потом пришли и буквы, но путь им был расчищен при помощи риторической алгебры.

— Значит, так, — решил Илюша, — сперва мы наблюдаем, замечаем важные особенности при пользовании старыми способами, а затем на основании этих наблюдений и рассуждений уже строится новая наука, то есть новый ее раздел.

— Правильно, — согласился Мнимий, — такие весьма важные перемены и бывают, как я выразился, «нежданно разительными». Такие нововведения, обобщающие большой опыт, дают огромные результаты и сразу двигают науку вперед.

Проходит несколько десятилетий — и науку уже узнать нельзя, так быстро она развивается на новом рубеже. Арабы построили алгебру, ее узнали в Европе, а затем сразу раздаются мощные голоса Виеты и Декарта. И вот уже та алгебра, которую вы учите в школе, построена. И все становится иным, появляются возможности строить еще нечто совершенно новое.

— А когда это случилось?

— Арабская алгебра родилась примерно в восьмом или девятом веках, а распространять ее в Европе стали примерно с двенадцатого века. Я имею в виду славного Ал-Хорезми.

— 426 —

Прибор Платона.

В это же время появляются сочинения европейцев, уже освоивших алгебру. В начале шестнадцатого века все это было в Европе освоено, развито и вот тут-то Европа встает на новый путь развития. Сочинения Архимеда и Аполлония переведены и напечатаны. Начинаются новые труды. Они как бы вмещают все, что Европа унаследовала от арабов (а стало быть, и от индийцев) и от Древней Греции. И теперь начинаются плодотворнейшие труды по объединению того и другого. Если труды европейцев, которые привели к интегральному и дифференциальному исчислению, были завершением трудов древних, шедших в том же направлении, то с шестнадцатого века началось еще одно движение: новые достижения риторической алгебры были впервые успешно применены к решению алгебраических уравнений высших степеней, например кубических.

— А раньше их совсем не умели решать? — спросил Илюша,

— 427 —

Одна средняя пропорциональная и один прямой угол.

— Опыты и частные решения были. Мы вам рассказывали о способе двух средних пропорциональных и о способе Менехма (в Схолии Пятнадцатой — способ двух парабол). Но все это были геометрические способы, которые не обладали общностью, то есть не могли быть применены для решения любой задачи, которая приводит к кубическому уравнению.

— Мы рассматривали, кажется, тогда, — заметил Илюша, — пропорцию Гиппократа:

а : х = х : у = у : b

и ее алгебраическое решение, а как греки решали, мы как будто не говорили.

— Ну что ж, — сказал Радикс, — можно и это припомнить.

Для решения этой задачи — для удвоения куба — можно пользоваться так называемым «прибором Платона», который легко представить тебе в виде двух плотничьих наугольников, то есть деревянных прямых углов, как бы прямоугольных треугольников без гипотенузы. Начинаем с чертежа, где изображены две прямые, пересекающиеся под прямым углом. Затем берутся два угольника и прикладываются друг к другу так, чтобы они образовывали два прямых угла. Нетрудно рассудить, что если даны длины отрезков а и b, то из двойной пропорции Гиппократа, которую я только что привел, можно получить:

х3 = a2b; у3 = ab2;

вернуться

37

Подробней об арабской алгебре можно узнать в книге А. П. Юшкевича «История математики в средние века». М., Физматгиз, 1961, гл. III, «Математика в странах ислама».