— Кажется, теперь представляю, — осторожно признался Илья. — Только разве это так важно, написать в таком виде, а не в другом?
— В таком кропотливом деле, как это, — отвечал Мнимий, — нельзя пренебрегать ни малейшим упрощением. Так и в данном случае, то есть для куба, при решении уравнения
x3 = 1
Первый корень, конечно, равен единице, а другие два…
— Другие два, — подсказал Илюша, — получаются из квадратного уравнения, то есть из такого:
где в правой части неполный квадрат суммы. Решая квадратное уравнение, получаем:
— Правильно… — заметил Мнимий. — Но давайте проделаем еще один поучительный опыт: возведем наш только что полученный икс-второй в квадрат:
— И получился, — сказал Илья, — не кто иной, как сам икс-третий! Ну, а если его еще и в куб?.. Правильно! Единица получается. Все в порядке.
— Так вот, — продолжал Мнимий, — назовем один из корней из единицы, то есть наш икс-второй, греческой буквой альфа. Тогда икс-третий, как вы только что выяснили, будет а2. А теперь я должен еще отметить, что среди всех корней из единицы (для квадратного корня два, для кубического три, и так далее, то есть их число совпадает с числом единиц в показателе корня) имеются такие корни, которые обладают весьма интересным и полезным свойством. Если мы один из таких корней будем возводить последовательно в возрастаю-
— 447 —
щие степени, начиная со второй, то получим все остальные корни данной совокупности. Например, второй и третий корни кубические из единицы (первый, конечно, единица) обладают этим свойством, так что
а22 = а3; а32 = а2; а23 = а1 = 1.
Если же взять для другого примера все корни шестой степени из единицы, от а1 до а6, то из них только два (а именно а1 и а5) обладают этим свойством и называются первообразными корнями. Например, из корней четвертой степени первообразных только два (a2 и а4), тогда как для пятой степени все корни, не считая первого, равного 1, будут первообразными. Если вписать в единичный круг правильный многоугольник, одна вершина которого лежит в точке с координатами 1, 0), то можно заметить, что только те его вершины будут давать первообразные корни, которые принадлежат именно этому многоугольнику, но отнюдь не какому-либо другому — с меньшим числом сторон и одной вершиной к точке с координатами A, 0). Прошу покорнейше запомнить это правило. Оно нетрудное. А теперь мы можем снова перейти и к формуле Кардана. Если у нас есть уравнение кубическое:
y3 + py + q = 0,
а формулу Кардана напишем в таком сокращенном виде:
то корни нашего уравнения будут таковы:
y1 = A + B;
y2 = αА + α2В;
y3 = α2А + αВ.
— Все-таки, — вымолвил опасливо Илюша, — это получается не так-то просто… С квадратным одна минута, а тут…
— Есть и более сложные задачи, а у сложных задач и способы решения довольно хитрые. Да это еще не все! А дальше способен слушать? А то закроем заседание нашей комиссии — и по домам!
— Нет, нет, — взмолился Илюша, — мне хочется все-таки до конца дослушать!
— «До конца»! — повторил ворчливо Радикс. — Ты дума-
— 448 —
ешь, у этой штуки есть конец? Что касается меня, то я в этом отнюдь не уверен. Так еще немножко проползти можно…
— Поползем! — ответил Илюша, вздохнув потихонечку.
— Воля твоя, — отвечал Радикс, — только потом чтобы не жаловаться, что, дескать, замучили!
— Не буду жаловаться! — храбро заявил Илья.
— Тогда слушай дальше, — продолжал Радикс.
— Слушаю!..
— В конце восемнадцатого века замечательный французский математик Лагранж пытался разобраться во всех способах решения уравнений третьей и четвертой степеней. После того как Эйлер нашел сочетания значений двух кубических корней в формуле Кардана, чтобы получить значения всех трех искомых корней, изучение алгебры комплексных чисел сильно двинулось вперед. Лагранж обратил внимание на то, что любой из двух кубических радикалов в формуле Кардана можно выразить через три корня уравнения при помощи следующей формулы (в зависимости от того, какой корень считается первым, какой — вторым, какой — третьим):