х1 + х2 = — р.
Возьмем еще одно выражение, составленное из тех же корней, только не сумму, а разность, и возведем ее в квадрат:
(x1 — x2)2 = (x1 + x2)2 — 4x1x2 = p2 — 4q
Отсюда сразу можно написать, что
x1 + x2 = — p
x1 — x2 = ± √( p2 — 4q)
Сложим эти два равенства и сейчас же получим известную формулу решения квадратного уравнения. Не так ли?
— Так, конечно, — отвечал Илюша. — Из суммы этих выражений один корень получаем, а из их разности — другой. Все понятно. Выходит, что мы этим способом получили два уравнения первой степени. Раз нам нужно два решения, то мы можем к ним прийти через два уравнения первой степени… То есть я не знаю, всегда ли так должно получаться, но во всяком случае с квадратным уравнением именно так и получается…
— Допустим… — отвечал Мнимий. — Но лучше сказать, пусть так будет вплоть до первого противоречия с этим предположением либо допущением.
— А если встретится противоречие?
— Тогда посмотрим. Попробуем его обойти, а если не удастся, придется видоизменять наше допущение. Когда Лагранж, пытаясь обнаружить общее правило из разных решений алгебраических уравнений, нашел наконец свою замечательную формулу, он заметил, что три корня в ней надо брать в некотором вполне определенном порядке, а это на-
— 451 —
толкнуло его на новые плодотворные опыты. Если взять все три корпя кубического уравнения, то есть х1, х2 и х3, то, если их брать не только в той последовательности, которая оказалась необходимой — вместе с нашими помощницами, альфами, — но и во всех остальных…
— Интересно, — заметил Радикс, — а сколько будет этих всех остальных?
И оба, Радикс и Мнимий, внимательно посмотрели на нашего героя, Илью Алексеевича.
— Остальных последовательностей корней? — неуверенно повторил мальчик. — Не понимаю вопроса… Или, может быть, о порядке вы говорите? Тогда вы меня о перестановках спрашиваете?..
Не отвечая ни слова, Радикс и Мнимий все так же пристально смотрели на Илюшу, который чувствовал себя под их взглядами не в своей тарелке.
— … и уж если это так, — в полной неуверенности продолжал он, — то раз всего три корня, то, как их ни переставляй, выйдет только шесть различных последовательностей. И все.
Опять полная тишина. Вдруг Илюша почувствовал, что в его левой руке оказалась маленькая коробочка, и действительно, это был просто самый маленький Дразнилка с тремя шашками. Только на шашках были изображены символы корней:
Илюша начал машинально двигать шашечки, но ничего нового или интересного не обнаружил. Да, действительно, всего получалось шесть перестановок! Но он это давно знал:
(x1 x2 x3); (x2 x3 x1); (x3 x1 x2);
затем опять получается то же самое. А если переставить две шашки, ну, скажем, x2 и x2, то получатся еще три случая:
(x2 x1 x3); (x1 x3 x2); (x3 x2 x1);
а потом снова то же.
— Шесть, — согласился Мнимий, — спору нет. Но вам пришлось однажды что-то менять в первом расположении. Это как надо понимать?
— 452 —
— Это как бы два круга Дразнилки; первый можно назвать четным кругом, а второй — нечетным, потому что в первом случае одна шашка постоянно обходит две шашки, как и полагается в Дразнилке, а во втором сначала обходят одну шашку, и порядок меняется. Перейти от одного круга к другому, не вынимая одной шашки из коробочки, нельзя.
При перестановках каждый раз первая шашка попадает в конец направо.