— Да, все-таки очень сложные формулы! — вздохнул Илюша.
— 458 —
— Да ими и не пользуются, — отвечал Мнимий, — имеются гораздо более доступные средства в дифференциальном исчислении.
— Ну-с, молодой человек, — выговорил степенно Радикс, — голова на месте?
— Кажется, на месте, — отвечал Илюша. — Трудно ужасно, так длинно!..
— Не так еще ужасно! — отвечал преспокойно Радикс. — А ты, кстати, видел, какую траекторию в пространстве описал тот советский спутник, который умудрился снять фотографию Луны с той ее стороны, которую с Земли не видно? Как ты полагаешь, очень легко было ее вычислить?.. Ну, а громадные турбины на гидростанциях, их рассчитать просто? А скоростные и высотные самолеты? А счетные электронные машины? Ведь это все необходимые и неизбежные устройства в нашем веке! А расчеты, касающиеся атома и всего его строения, так это еще во много-много раз труднее. Но люди, твои современники, одолевают! Да еще каждый день и каждый час идут вперед… Так что хочешь не хочешь, а поспевать всюду надо!
— Конечно, — покорно пробормотал Илья, — я ведь не спорю…
— Тогда чем же ты недоволен?
— Мне ужасно обидно, что я все-таки самого главного не понимаю! Не понимаю, и все!
— Ишь какой сердитый! — заметил Радикс. — Из-за чего ты так раскипятился?
Илюша даже раскраснелся от волнения.
— Не могу поверить, чтобы эти Мнимии были просто открытием. По-моему, они в то же время еще и чье-то изобретение…
— Видишь ли, — отвечал ему Радикс, — всякое открытие если и не изобретение, то путь к нему. Открытие явления электрической индукции кончилось сооружением динамо-машины, то есть изобретением. Оно было основано на использовании открытия об индукции. Здесь, в вопросе насчет Мнимия, дело обстоит несколько сложнее, а в общем довольно похоже. Человек, изучая алгебраические уравнения, натолкнулся на эти «странные» комплексные числа. Оказалось, что анализировать некоторые очень важные вопросы алгебры без них невозможно — это было открытие! Но в дальнейшем, когда ученые постепенно примирились с этими «странностями», оказалось, что эти замечательные орудия научного прогресса крайне важны и для техники (в электротехнике, в самолетостроении, например), и тогда комплексное число стало привычным. Догадка — великое дело в науке! Но ведь
— 459 —
догадку надо обосновать, чтобы знать, где она пригодится, а где нет. И когда начинается обоснование догадки, начинается и самое построение этого образа или понятия, тогда это логическое построение понятия в известном смысле можно назвать изобретением, например, математические обозначения. Понятие интеграла, о котором мы уже говорили, было найдено, то есть открыто, примерно в одно и то же время Ньютоном и Лейбницем. Но Лейбниц придумал такие удобные обозначения в этом новом разделе нашей науки, которые сразу всем очень помогли, и вот это было именно изобретением[41].
— Так вот-с… — промолвил Мнимий, — в заключение я должен буду еще сделать три важных замечания к нашей этой последней беседе. Первое заключается в том, что замечательные труды ученых о решениях уравнений высших степеней привели к выводу, что многие трудные вопросы по части уравнений можно уподобить двум очень простым задачам: 1) извлечению квадратного корня и 2) извлечению корня шестой степени. Первая задача не поддается никакому упрощению, тогда как вторая может быть разбита на две ступени — извлечение кубического корня, а затем из результата — извлечение квадратного. Так вот, общее решение уравнения пятой степени относится именно к первому классу задач. Второе — это то, что все подобного рода задачи очень тесно связаны
— 460 —
с перестановками. Наконец, третье заключается в том, что вся замечательная теория Галуа в дальнейшем разрослась в целую математическую дисциплину, имеющую ныне крупнейшее значение. Хотя она и далека от непосредственной инженерной практики, но она дает математику в руки мощное орудие для решения вопроса о том, разрешима ли данная задача вообще (определенными средствами) или нет. Объектами математической мысли стали не самые числа, но операции над ними.
41
Многое может пояснить книжка М. М. Постникова «Теория Галуа» (*) (М., Физматгиз, 1963), однако она требует внимательного чтения. Кроме того, уже упомянутая книжка У. У. Сойера (последние главы, особенно гл. XIV) многое расскажет нашему читателю о замечательных достоинствах теории Эвариста Галуа. Некоторые историки науки полагают, что эта теория открыла новую эпоху в математике.
В маленькой полезной книжке И. Я. Бакельмана «Инверсия» (М., «Наука», 1966, Серия «Популярные лекции по математике», вып. 4) читатель найдет теорему Птолемея (о которой у нас говорится на стр. 445), а также и краткие указания о теореме Галуа (см. стр. 52-54, 65 и далее). О решении кубического уравнения можно узнать из книги Г. М. Шапиро «Высшая алгебра» (М., Учпедгиз, 1938, изд. IV), гл. V, § 2; о симметрических функциях — гл. IV, стр. 123 и 145. Теорема Галуа упоминается в гл. VIII, § 4, стр. 311. Кроме того, мы настоятельно советуем нашему многоуважаемому читателю раздобыть себе прекрасную книгу Г. С. Кокстера «Введение в геометрию» (М., «Наука», 1966), где он найдет целый ряд интереснейших вещей, изложенных мастерски и с большим остроумием. А если кому-нибудь вздумается еще кое-что серьезное узнать о великих подвигах комплексных чисел, то можно посоветовать прочитать статью А. П. Юшкевича об определенном интеграле Коши (см. сборник «Труды института истории естествознания», М., АН СССР, 1947, т. I, стр. 373 и далее).