Выбрать главу

Илюша начертил фигуру, нарисованную внизу.

— Ну вот, — сказал Радикс. — Это и есть схема путей и перекрестков на ордене Уникурсала Уникурсалыча. Ясно, что вопрос о том, можно ли обойти все мосты, проходя через каждый только один раз, сводится к вопросу, можно ли вычертить эту фигуру непрерывным движением, то есть уникурсальна она или нет.

Илюша начал рассматривать схему, раза два сбился и наконец ответил:

— Тут выходит четыре нечетных узла — А, В, С и D.

— Ну, вот тебе и решение! -усмехнулся Радикс. — Мы с тобой сейчас установили, что в уникурсальной фигуре может быть любое число четных узлов и не более двух нечетных. Если в фигуре есть только четные узлы, то обход фигуры можно

— 59 —

начать с любой точки.

Если в фигуре есть два нечетных узла, то нужно начать обход именно с одного из них, а закончить в другом нечетном узле. А теперь представь, что тебе дана очень сложная фигура без нечетных узлов или с двумя нечетными узлами. Какие основания утверждать, что ты, выйдя из первого нечетного узла, сможешь обойти ее всю, не проходя ни одного пути дважды?

— Если она не состоит из нескольких несвязанных частей, то я, конечно, могу попасть в любую точку, а в четных узлах застрять не могу…

— Таким образом, раньше всего надо сказать, что фигура должна быть связной. А не может ли случиться, что ты, проходя через четные узлы, оставишь в стороне какую-нибудь часть фигуры так, что к ней уже больше нельзя будет добраться, а потом застрянешь во втором нечетном узле и не обойдешь всю фигуру?

— Как же это может случиться? — спросил Илюша.

— А вот, например, если на нашем первом чертеже, где два ромба соединены перемычкой, ты сначала пойдешь не по сторонам одного из ромбов, а по этой перемычке. Однако то же самое может случиться и как-нибудь иначе, если ты незаметно для себя разобщишь две части фигуры и она потеряет связность. Это значит, что свободных, то есть еще не пройденных путей, соединяющих две эти части, уже не останется.

Представь себе, что путь, по которому ты только что прошел, тем самым вычеркнут: ведь второй раз по нему идти нельзя, и, следовательно, он для тебя уже больше не существует.

Вот тебе фигура: если ты пойдешь по пути ABCDEA{4}, то вычеркнешь путь BCDE, а ромб CFDG окажется отрезанным.

— Значит, я шел неправильно. Мне надо было прежде из D попасть не в Е, а обойти сперва ромб DFCG, то есть идти в F или G.

— Это, конечно, верно, но только для данного случая. Вот ты говоришь, что шел неправильно. Но для того, чтобы идти правильно, надо показать, что возможно найти правильный способ обхода и при этом не для какой-нибудь определенной фигуры, а в самом общем виде, то есть для любой заданной фигуры, как бы она ни была сложна. Не забудь, что при этом ты должен будешь рассуждать, не зная ничего об этой фигуре,

— 60 —

кроме того, что это фигура связная и что в ней нечетных узлов или совсем нет, или только два. Именно так следует поставить задачу общего математического доказательства.

— Я буду рассуждать так. Раз это фигура связная, то, значит, я имею возможность так или иначе из первого узла попасть в тот, где должно закончиться мое путешествие, то есть либо во второй нечетный узел, либо, если это фигура только с одними четными узлами, вернуться обратно в начальный узел. Чтобы не путаться, я самый простой такой маршрут отмечу красной линией, а остальные оставлю черными. А затем пойду по этой красной линии, но в каждом узле буду останавливаться и проверять, нет ли из него еще черных путей, которые надо обойти раньше, чем отправиться дальше по красному маршруту. Вот это и значит «идти правильно».

— Нет, — ответил Радикс, — это еще не всё. Почему ты так уверен, что можешь обойти каждую из твоих черных фигур?

— Потому что все узлы у них четные. И если в точках, через которые проходят и красные пути, не считать этих красных путей, то для черных путей и эти узлы тоже будут четными…

— Справедливо! Но ведь таким образом мы приходим к той же самой задаче: снова надо доказать, что можно обойти эти фигуры. И вот мы подошли к самому важному пункту нашего рассуждения. Теперь будет не так трудно. Потому, что нам удалось привести задачу об обходе фигуры с некоторым данным числом путей к задаче об обходе фигуры с меньшим числом путей. Понимаешь?