Выбрать главу

— А теперь, — сказал Радикс, — рассмотрим еще раз наш способ двойного обхода в несколько иной форме. Ты помнишь, что мы с тобой говорили о дереве, когда толковали об уникурсальных кривых?

— Помню. Дерево — это такая связная фигура, которая состоит только из мостов и тупиков.

— Верно. Ну, а чем же отличается схема путей лабиринта от дерева?

— В лабиринте могут найтись петли, то есть замкнутые пути, а в дереве, как и в настоящем, ветки обратно в ствол его не врастают.

А если мы этот чертеж развернем:

— Вот именно! Но представь себе, что тебе пришлось повстречаться как раз с таким деревом-уродом, у которого некоторые ветки вросли обратно своими концами в ствол и

— 72 —

друг в друга. Что бы ты стал делать, чтобы обратить такого урода в обыкновенное дерево, в смысле расположения его ветвей, разумеется?

— Взял бы пилу или топор, залез на это дерево и стал отделять приросшие концы веток друг от друга и от ствола.

— Правильно. Так ведь это и есть твое первое правило, по которому ты, придя на перекресток, где уже был, возвращаешься обратно. Именно таким образом ты и превращаешь весь лабиринт в дерево. Если ты возвращаешься снова к своему пути, это означает, что ты пошел как бы по вросшей в ствол ветке и сделал круг. А когда ты не хочешь снова идти по основному пути и идешь вспять, то как раз и «отделяешь вросшую ветку», правда, действуя не топором, а просто запрещая себе перескакивать на основной путь.

Начерти-ка сам схему путей этого лабиринта и схему его обхода!

— Так, — отвечал Илья. — Теперь как будто все ясно. Действительно, если я должен облазить все дерево, значит, надо облазить каждую ветку, а спускаться вниз я начну только тогда, когда отмечу все ветки. Именно это я и буду делать в лабиринте, превращенном в дерево или в тупиковый лабиринт, если буду соблюдать второе наше правило, то есть не уходить с перекрестка по первому пути, пока есть другие, еще не пройденные дважды коридоры.

— Вот ты разберись хорошенько во всех наших схемах, особенно в схеме УУУ, и тогда все ясно станет. А потом попробуй сам на досуге поразмыслить вот над чем. Наше правило обеспечивает двойной обход лабиринта. А может быть, можно обходить дважды не все коридоры? Ведь схему коридоров лабиринта все же иногда удается превратить в уникурсальную фигуру, удваивая не все коридоры лабиринта. Ну-ка, попробуй найти какое-нибудь общее правило для этого. Ты сам пробовал ходить по лабиринту и знаешь, что это довольно утомительно. Нельзя ли как-нибудь уменьшить количество этих скучнейших, а быть может — кто знает? — и совершенно лишних хождений взад и вперед по одним и тем же коридорам? При этом, конечно, надо сделать так, чтобы весь лабиринт обойти, и в центре его побывать, и выйти на белый свет от-

— 73 —

 туда. Вот тут-то, друг Илюша, тебе и придется вспомнить кое-что из того, о чем мы с тобой толковали. Например, о топологической схеме лабиринта, затем о четности перекрестков-узлов в лабиринте и еще кое о чем…

Илюша посмотрел на Радикса и задумался.

— Вот уж не думал, — сказал он через минутку, — что задача о лабиринтах такое сложное дело! Читал я про них в разных книжках, и мне казалось, что это очень просто[7]. Мне только вот еще что приходит на ум. Мы с тобой разбирали лабиринты на плоскости. А могут существовать лабиринты в пространстве?

— Разумеется! Больше того, ведь только такие лабиринты и существуют в действительности. Коридоры копей, каменоломен, шахт, катакомб, как и сплетение подземных ходов, которые роет крот, можно рассматривать как пространственные лабиринты. И все наши правила отлично годятся и в этом случае,

Лабиринт, который построил специально для любителей элоквенции У. У. Уникурсальян, К. Т. Н., Д. Ч. и Н. У., М. Д., К. и К. О. С. М., П. В. В. М.

— 74 —

ибо они от числа измерений не зависят. Только твое правило правой руки тут никак не удастся применить.

— Уф! — воскликнул Илюша. — Все-таки это все довольно хитро. Но на досуге я все обдумаю и разберу как следует…

— Итак, — заметил Радикс, — мы с тобой не торопясь разобрали подробно две немаловажные задачки, а в продолжение этого разбора коснулись некоторых довольно серьезных вещей. Не так уж плохо! Чем с большей старательностью ты отметаешь все излишнее, тем скорее приближаешься к решению…

вернуться

7

Лабиринты были широко известны в древности. На одной из стен засыпанного вулканическим пеплом Везувия города Помпеи нашли выцарапанный план лабиринта с надписью: «Здесь живет Минотавр».