Выбрать главу

— То есть как — Совершенства?

— Тише! Тише! — сказал Радикс. — Впрочем, они уже удаляются. Эти удивительные существа суть совершенные числа великого Евклида…

— Это тот ученый грек, который написал «Начала», про геометрию?

— 78 —

— Он самый, а случилось это за три века до нашей эры. Поистине это был великий человек, — ответил очень серьезно Радикс. — «Совершенство же этих чисел заключается в том, что каждое из них равняется сумме своих делителей, разумеется исключая его самого. Например, число «шесть». Его делители — 1, 2 и 3. Сложи и опять получишь шесть. Или число «двадцать восемь». Его делители — 1, 2, 4, 7 и 14. Сложи их, и снова получается двадцать восемь. Следующее число будет 496, и оно опять-таки равно сумме своих делителей — 1, 2, 4, 8, 16, 31, 62, 124 и 248. Совершенно так же и с числом 8218, что ты и сам можешь легко проверить.

— И много этих чисел? — спросил Илюша.

— Если по натуральному ряду чисел добраться до десяти в двадцать четвертой степени…

— Это будет, значит единица с двадцатью четырьмя нулями! А как называется такое громадное число?

— Оно называется септиллион. Это будет девятый класс чисел: единицы, тысячи, миллионы, биллионы, триллионы, квадриллионы, квинтиллионы, секстиллионы и, наконец, вот эти септиллионы. Так вот, если до них добраться (а как ты сам понимаешь, это не так просто), то на всем этом протяжении чисел окажется всего-навсего восемь совершенных чисел. Они были найдены триста лет тому назад математиком Мерсенном. Еще Евклид дал общую формулу этих чисел, которая, разумеется, была выведена из наблюдений над ними.

И все же формула выводится на основании общих соображений. Формула очень простая. Но обращаться с ней тоже не очень просто. Вот она какова:

2n (2n+1 — 1).

При этом n может быть любым числом, однако выражение (2n+1 — 1) должно быть обязательно простым числом, то есть не иметь никаких делителей, кроме единицы и самого себя.

— Я знаю эти числа: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23 и так далее.[9]

— 79 —

— Ясно, — ответил Радикс. — Но если ты сам попробуешь применить эту формулу, то скоро убедишься, до чего это трудная задача. Я назвал тебе четыре совершенных числа. Для них в Евклидовой формуле n = 2, 3, 5 и 7. Если хочешь ознакомиться и с другими, то имей в виду, что для них число n будет равняться 13, 17, 19 и 31. Восьмое число начинается с квинтиллионов. Позже было найдено девятое совершенное число (для него n = 61), а затем — десятое, для которого n = 89. Для одиннадцатого n = 107. Для двенадцатого n = 127; в этом числе больше семидесяти пяти цифр. Ты заметил, что все указанные совершенные числа четные? Так вот, греческий математик Ямвлих говорит (и в правильности этого легко убедиться), что из всех четных чисел совершенными могут оказаться только те, которые подходят к формуле Евклида. Что формула Евклида дает в итоге четное число, это как будто ясно. Не — правда ли?

— Мне тоже так кажется, — отвечал Илюша поразмыслив, — потому что первый множитель — это два в какой-то степени, а степени двух все ведь четные?

— Да. И при этом никто никогда еще не мог найти ни одного нечетного совершенного числа. Однако, с другой стороны, все-таки никому так и не удалось доказать, что совершенное число не может быть нечетным… Сколько их? Тянутся ли они до бесконечности? Или на каком-либо обрываются? Никто сказать не может. В семнадцатом веке Антонио Катальди доказал, что все совершенные числа, кроме «шести», можно представить формулой (9n + 1). Это верно, однако ничего особенного из этого не следует. В двадцатом веке пытались доказать о них хотя бы то, что они могут быть только четными. Однако удалось доказать только то, что нечетные совершенные числа, если, конечно, они существуют, должны делиться по крайней мере на пять различных простых чисел и должны быть чрезвычайно велики.

— Да-а!.. — протянул Илюша. — Действительно, странная задача. А какой, собственно, толк от этих совершенных чисел? Мне кажется, что какое-нибудь квадратное уравнение гораздо полезнее. При его помощи решаются разные задачи, которые нужны в физике или в технике, ну и в геометрии тоже. Ни химики, ни инженеры, ни астрономы в этих совершенных числах, по-моему, не нуждаются. Они, конечно, очень красивые, эти Совершенства, но только… мне показалось, немножко похожи на кукол. А что с куклами делать? Поиграть да и бросить. И они молчат. Ты вот говоришь со мной, а они нет. Я не понимаю, зачем ими заниматься. Не все ли равно, четные они или нет? Ведь с их помощью плотину не выстроишь, самолет не сделаешь?

вернуться

9

Есть очень хорошая книга известного польского математика Вацлава Серпинского «Что мы знаем и чего не знаем о простых числах». М., Физматгиз, 1963.

Тот, кто заинтересуется распределением простых чисел среди натурального ряда чисел, может узнать довольно интересные вещи по этому поводу в журнале «Знание — сила» (№ 3 за 1965 год, стр. 38-39, а также последняя страница обложки), где рассказывается о странной спирали из простых чисел, обнаруженной математиком С. Уламом. Эта углообразная спираль (чертится на клетчатой бумаге) обнаруживает ряд совершенно неожиданных правильностей по части разложения простых чисел в натуральном ряду. На этой необычной диаграмме не только самые простые числа, но и промежутки между ними располагаются в виде довольно длинных отрезков, образующих самые замысловатые узоры.