— Ну, теперь запиши.
Илюша записал так:
А)
1 — 2 — 3
2 — 3 — 1
3 — 1 — 2
Б)
3 — 2 — 1
2 — 1 — 3
1 — 3 — 2
— Вот они и все, — сказал Илюша, — их всего шесть штук.
— Попробуй, — посоветовал Радикс, — взять опять комбинацию 1-2-3 и перекладывать не переднюю назад, а заднюю вперед.
— Не стоит, — отвечал Илюша, — это я уже пробовал там, у Розамунды. То-то и дело, что они ходят друг за дружкой гуськом. И все равно в какую сторону двигать.
— 101 —
— Правильно, — сказал Радикс. — А теперь положи карточки рядом в порядке 1-2-3 и посмотри в зеркало, что у тебя получится.
Илюша посмотрел в зеркало и увидел, что из его комбинации 1-2-3 в зеркале получается 3-2-1.
— Как раз наоборот! — сказал он. — Из «А» получается «Б».
— Ну, теперь переставляй их вкруговую. И смотри, что выходит в зеркале.
Из 2-3-1 в зеркале вышло 1-3-2; из 3-1-2 получилось 2-1-3.
— Ну, как ты думаешь, — спросил Радикс, — можно ли уложить карточки так, чтобы и перед зеркалом и в зеркале получилось одно и то же расположение?
— Н-нет, — сказал в недоумении Илюша. — Ну как же это возможно? Нет, нельзя!
— Так, — отвечал его наставник, — Значит, там один круг, а здесь другой. Ну, вот и всё. Весь секрет Дразнилки в том, что там при наличии одной пустышки, в сущности, возможны только круговые перестановки. Игра в Дразнилку, как ты и сам понимаешь, это игрушка, почти безделка, но вот именно из-за того, что в этой игре участвуют эти круговые перестановки, о которых мы еще наговоримся впоследствии, игрушка эта получает довольно серьезный смысл. А перевести 1-2-3 в 3-2-1 циклической перестановкой нельзя, как нельзя добиться, чтобы в зеркале было то же, что перед зеркалом. Значит, если у тебя стоит с самого начала какая-нибудь комби-
— 102 —
нация из круга «А», то ты можешь прийти к основной комбинации 1-2-3. Это будет четный круг. Но если у тебя стоит комбинация из круга «Б», то ее перевести в основную комбинацию невозможно. Но это — круг нечетный. Попробуй теперь в основной комбинации 1-2-3 переставить две какие-нибудь рядом стоящие цифры.
Илюша переставил. Из 1-2-3 получилось 1-3-2, потому что он переставил 2 и 3.
— Вот теперь получился круг «Б».
— Переставь еще двух соседей.
Илюша поменял местами 3 и 1 и получил 3-1-2.
— А теперь получился круг «А».
— Ну, вот и всё! — сказал Радикс. — Ты, я думаю, и сам видишь, что если переставляешь соседей четное число раз, то получается тот же круг. А если переставишь нечетное число раз любых соседей, причем неважно — этих ли самых или каких-нибудь других, то ты переводишь все расположение во второй круг, и тогда вернуться к первому кругу, не вынимая шашек из коробочки, невозможно. А теперь возьмем какую-нибудь комбинацию шашек в самом маленьком Дразнилке. Ответь мне: можно ли сказать сразу, выйдет у тебя в данном случае или не выйдет?
— Сказать я могу, — отвечал мальчик, — потому что помню, какие комбинации относятся к какому кругу.
— Та-ак… — довольно кисло протянул Радикс. — Однако не в числе шашек дело, потому что всего интереснее располагать правилом, которое было бы пригодно для любого числа шашек. Разумеется, мы начнем с того, что выясним, какие комбинации относятся к какому кругу, но в дальнейшем нам придется рассуждать уже по-иному. Не так ли? Как тебе кажется?
— Мне кажется, что нам нужно найти правило, по которому можно было бы сразу установить, выйдет данная комбинация или нет. Ты говорил, что все дело в том, сколько раз я переставлял соседние шашки…
— Так. Ну и что же?
— По-моему, можно так рассуждать. Каждый раз я меняю местами две шашки, то есть одну пару. Значит, надо сосчитать, сколько есть таких пар, которые поменялись местами.
Так как я не знаю, как именно они переставлялись, то надо пересмотреть все пары, которые стоят не в том порядке, который нужен. Вот, например, я начинаю с комбинации 1-2-3, затем идет комбинация 2-1-3. Тут только одна пара нарушает порядок: единица и двойка.
— Можно сказать, — вставил Радикс, — что эта пара образует беспорядок, инверсию.
— 103 —
— Хорошо. Значит, у нас здесь одна инверсия. Каждую пару я буду считать только один раз. Дальше беру комбинацию 2-3-1. Здесь есть две пары, образующие инверсии. Первая пара — единица и двойка, вторая — единица и тройка.
Двойка и тройка стоят относительно друг друга в порядке. Значит, здесь две инверсии. Беру еще одну комбинацию: 3-2-1. Здесь три пары шашек нарушают порядок. Первая пара — тройка и двойка. Вторая пара — тройка и единица. Третья пара — двойка и единица. Всего здесь три инверсии. Как ты и говорил, при четном количестве инверсий задачка решается…