Выбрать главу

— А если нет ни одной?

— Если нет ни одной, то и делать нечего, все и так в порядке. Значит, нуль тоже можно считать четным числом.

— Правильно.

— А если нечетное число инверсий, то задачка не может быть решена. Если подсчитать число инверсий в любой комбинации, то можно сразу сказать, выйдет или не выйдет. Если инверсий четное число, то выйдет; если нечетное, то не выйдет.

— Хорошо, — сказал Радикс, — а теперь перейдем к большому Дразнилке. Как там надо считать число инверсий и какой установить порядок?

Илюша задумался.

— Да, — промолвил он, — они просто по кругу не располагаются. Это ясно. Сейчас я попробую во всем разобраться. Ты не торопи меня. Ага, кажется, я начинаю кое-что понимать.

Начальный порядок там идет змейкой (верхний рисунок){7}.

— Правильно. Так вот мы и будем далее считать, «змейку» как нормальное начальное расположение в Дразнилке. Если двигаться по «змейке», то инверсий не получится. Вдоль нашей «змейки» мы и будем отсчитывать число инверсий. Теперь посмотрим, как вообще будет изменяться число инверсий, если

— 104 —

мы возьмем какое-нибудь — любое — расположение (рисунок средний){8} и в нем передвинем на пустое место (оно у нас во втором столбце и во второй строке) одну из шашек той же строки, то есть «три» или «восемь».

— Если идти вдоль по «змейке», — отвечал внимательный Илюша, — то число инверсий не изменится. Только разрыв в «змейке», который образует пустышка, перейдет на другое место, а в остальном расположение останется такое же.

— Прелестно! — отметил Радикс. — Ну, а если я на это место подвину одну из шашек того же столбца, то есть «десять» или «шесть», тогда что случится?

— Можно сосчитать! — сказал Илюша. — В первом случае мы перейдем к положению нижнего рисунка, то есть от ряда (по «змейке»)

1, 10, 15, 14, 12, 8, —, 3

к ряду 

1, — , 15, 14, 12, 8, 10, 3.

Раньше «десять» образовывало инверсию с «восемью», а теперь этого не будет, но зато появятся инверсии «пятнадцати», «четырнадцати» и «двенадцати» с «десятью»; в общем, окажется на три инверсии больше и на одну меньше — в итоге на две инверсии больше. Если же передвинуть не «десять», а «шесть», то в средних строчках вместо ряда мы получим ряд

12, 8, —, 3, 11, 6, 7, 5

мы получим ряд

12, 8, 6, 3, 11, — , 7, 5;

значит, «шесть» перескочит через «три» и «одиннадцать» и будет теперь образовывать новую инверсию с «тремя», потеряв свою старую с «одиннадцатью», — число инверсий совсем не изменится.

— Вообще, — сказал Радикс, — где бы ты ни оставил пустышку, каждый раз, когда на ее место подвинешь соседнюю шашку сверху или снизу, число инверсий или вовсе не изменится, или изменится на четное число.

Большая стрелка показывает, как идет «змейка».

— 105 —

— Да-а, — протянул Илюша. — Из этих примеров выходит так. Но я не пойму: как надо рассуждать, чтобы убедиться в том, что всегда так будет выходить?

— Ну хорошо! — примирительно сказал Радикс. — Давай теперь соберем все наши наблюдения над Дразнилкой. И попробуем подытожить все вместе. Итак — шашка может обойти только четное число других шашек: две, четыре и шесть. Это и есть основа всей системы Дразнилки: если есть возможность, комбинируя друг с другом такие четные обходы, достигнуть желаемой позиции — задачка решается. Если нет, то и нет решения. Надо сравнить заданную позицию с желаемой: если между ними четное число инверсий — все в порядке! Если нечетное, ничего добиться нельзя. Вот и все! Любая позиция из круга иной четности переходит в обратный круг при перестановке с места на место одной-единственной (но не двух!) шашки. Если внимательно посмотреть на зеркальное отображение самого маленького трехшашечного Дразнилки, то ясно, что один круг переходит в другой как раз через зеркальное отображение. Но если это так, то всегда из задачи, которая «не выходит», можно сделать другую, которая «выходит». Это будет та же искомая позиция, но в зеркальном отображении. Конечно, как это в каждом случае сделать — уж вопрос другой (АЛ-1, VIII).

— Понимаю, — сказал Илюша. — Выходит верно, но как-то не очень складно. Ведь должна же быть какая-нибудь общая причина, благодаря которой число инверсий всегда меняется на четное число при скачке через четное число шашек…

— Ишь какой хитрец! — воскликнул, рассмеявшись, Радикс. — Причина-то как раз в том и заключается, что ты перескакиваешь через четное число шашек, а ведь всякое четное число состоит из двоек. А если взять две шашки, то уже мы с тобой установили… Впрочем, можно этого отдельно и не рассматривать. Будем рассуждать так. Пусть шашка перепрыгивает по «змейке» через четное число 2n шашек. Причем есть р шашек, с которыми у нее были инверсии, и q = 2nр шашек, с которыми инверсий не было. Ясно, что 2n — четное число. Но если это так, то числа р и q, как говорится, одной четности, то есть либо они оба четные, либо оба нечетные, иначе их сумма не могла бы быть четной. Если же я теперь вычту эти два числа одной четности, р и q, друг из друга, то я обязательно получу четное число, так как разность двух четных, как и двух нечетных, чисел неизбежно четная. Можешь проверить, коли тебе не лень. Другими словами, разность двух чисел всегда одинаковой четности с их суммой. Иначе говоря, алгебраическая сумма некоторого числа единиц с любыми знаками всегда будет одной четности с чис-