— 106 —
лом этих единиц. Вот в чем тут сила! Ну, вернемся к нашей задаче. Изложи мне коротко и ясно: что же мы доказали этим рассуждением?
— Мы доказали, что при всякой перестановке шашки на пустое место число инверсий меняется на четное число. Значит, здесь, как и в маленьком Дразнилке, вернуться к исходному положению (то есть к такому, в котором нуль инверсий) можно только из расположения, в котором подсчет вдоль по «змейке» показывает четное число инверсий.
— Великолепно! — отвечал, вздохнувши, чтобы перевести дух, Радикс. — Вот теперь мы можем сказать, что установили необходимое условие того, чтобы Дразнилка вышел. А то, что это условие еще сверх того и достаточное, можно доказать совершенно строго, но мы этим заниматься не будем.
— Ну! — произнес огорченно Илюша. — Это мне не очень нравится. Ведь выходит, что мы только полдела сделали. И, наверно, это самое интересное и есть, потому что мы не получили правила, как приводить шашки в порядок.
— Конечно. Хотя одно общее доказательство вовсе и не должно указывать, как добиться цели скорей всего. Но только дело в том, что это доказательство не простое, и я не уверен, захочешь ли ты его слушать.
— Захочу, захочу! — обиженно сказал Илюша. — Мне очень нравится, когда я наконец начинаю разбираться в таких вещах, которые сперва кажутся такими уж хитрыми, что не знаешь, с какой стороны и подойти.
— Хорошо, — покорно отвечал Радикс. — Давай попробуем. Начнем вот с чего: убедимся в том, что с помощью перемещения шашек на пустое место мы всегда можем перепрыгнуть через любые две шашки по линии «змейки». Это совершенно ясно, если они обе стоят по соседству с пустышкой у того края, где «змейка» переходят из строки в строку. Но если они стоят где-нибудь рядом в одной строке, то мы можем поступить так: переместим их на край, не нарушая циклического расположения трех шашек (третья — та, которую надо перевести), так, чтобы они стали на краю друг под другом; затем, освободив место для переводимой шашки, перемещаем ее через них и вернемся, не нарушая
— 107 —
циклического расположения трех шашек, к исходному порядку, но с перемещенной уже шашкой. Приведем пример, и все станет ясно (верхний рисунок, стр. 107). Шашку «восемь» переведем через «девять» и «десять». Сперва мы передвинем шашки в двух нижних строках (нижний рисунок на стр. 107). Затем, как показывают три рисунка рядом{9}, мы постепенно передвигаем шашки, потом перескакиваем и возвращаемся обратно. Как видишь, все осталось на месте, только шашка «восемь» перепрыгнула через двух своих соседок.
А теперь нам осталось доказать еще, что все шашки можно поставить на место такими скачками при любом исходном положении, содержащем четное число инверсий. Для этого давай поставим сначала шашку «единица» на первое место, если она еще на нем не стоит. Ясно, что, перескакивая через две шашки, мы ее доведем либо до второго, либо до первого места. Но если «единица» попадет не на первое, а на второе место, мы заставим шашку, которая стоит на первом месте, перепрыгнуть через две шашки направо. Тогда шашка «единица» очутится на первом месте.
Восьмерка перепрыгивает через две шашки («2» и «11»)
Поступим затем тем же порядком и с шашкой «двойка», то есть поместим ее на второе место, и так далее.
Но когда мы дойдем до предпоследнего места, то поставить на него шашку, которая стоит на последнем месте, не удастся, потому что ей ведь для этого надо перепрыгнуть через одну, а не через две шашки. В таком случае в самом конце «змейки», в четвертой строке, мы получим расположение 13-15-14 вместо 13-14-15, и если все остальные шашки уже стоят по местам, то получается только одна инверсия, между «четырнадцатью» и «пятнадцатью». Однако это может случиться только в тех расположениях, где уже с самого на-