— 108 —
чала было нечетное количество инверсий. Следовательно, при четном числе инверсий все шашки в конце концов неизбежно станут на свои места.
Восьмерка перепрыгивает через четыре шашки («14», «15», «11» и «2»)
Как видишь, мы попутно еще доказали, что когда Дразнилка «не выходит», то на свои места можно поставить все шашки, кроме двух последних, что ты, как я полагаю, и сам не раз замечал. Если ты пожелаешь разобрать это доказательство на примере, расставь все шашки для упрощения в одну шеренгу и перепрыгивай через две, как указано. Конечно, в квадратике Дразнилки ты можешь для ускорения дела иногда перепрыгивать и через четыре или шесть шашек, как мы выяснили раньше. Ну вот, а теперь поставь нашу «змейку» в ее натуральном порядке.
Илюша поставил (см. рис. на стр. 110).
— Погляди, как в зеркале отражается, и запиши.
Илюша глянул в зеркало и написал то, что видно на рисунке на следующей странице внизу.
— В первой строке «четыре» дает инверсии с «тройкой», «двойкой» и «единицей», «тройка» — с «двойкой» и «единицей», наконец, «двойка» — с «единицей».
Всего в первой строке одна плюс две плюс три — шесть инверсий. Во второй строке столько же. В третьей тоже столько же. Всего восемнадцать. А в последней строке только три инверсии. В конечном счете получается двадцать одна инверсия.
— То есть в итоге нечетное число. Значит, если зеркальное расположение «не выходит», его можно перевести в натуральное расположение с одной инверсией. Но раз так, значит, и расположение с одной инверсией можно перевести в зеркальное. А поэтому всякое расположение, которое «не выходит» (и которое, как мы доказали, можно свести к одной инверсии), ты можешь перевести в зеркальное. Так вот, когда у тебя «не выйдет» (возьми-ка поставь в большом Дразнилке пример с перестановкой только двух шашек — «единицы» и «пятнадцати»), то ты можешь для утешения стремиться не к натуральной расстановке шашек, а к зеркальной.
— Вот это так! — вскричал Илюша. – Беспроигрышный Дразнилка! Здорово! Знаешь, это мне напоминает то странное слово, которое язык тетушки написал в Схолии Четвертой.
— 109 —
Илюша попробовал прием и убедился в его доброкачественности.
— Мне потому нравится Дразнилка, — заявил Илюша, — что все у него выходит просто. Только торопиться не надо!
Радикс усмехнулся.
— Как сказать! — проворчал он. — Как сказать! Если ты уж так хорошо все понял, то возьми-ка переверни шашки. На них ведь сзади, как ты помнишь, написано «Тетушка Дразнилка».
Вынь одну шашку… Ну, для памяти вынем ту, на которой стоит буква «ша». Потом перепутай шашки и проверь на буквах, как получается насчет правила «выйдет-не-выйдет». А коли заметишь какие-нибудь особенности, не поленись дать исчерпывающее объяснение. Да, кстати, вот еще что. Скажи, пожалуйста: известно ли тебе, что бывают уравнения со многими неизвестными?
— Ну еще бы! — отвечал Илюша — Конечно, известно.
Так вот, представь себе, что Дразнилка имеет довольно близкое касательство к решению систем уравнений со многими и даже весьма многими неизвестными.
— Да что ты? — удивился мальчик.
— Дело в том, — продолжал Радикс, — что если тебе, допустим, придет в голову точно определить, как можно вывести общие формулы, определяющие значения неизвестных в зависимости от коэффициентов в уравнениях, то придется заняться тем же самым, чем мы сейчас с тобой забавлялись, а именно — подсчитать число инверсий. Если не струсишь, то советую проверить это. Давай напишем систему уравнений:
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3