Выбрать главу

— 161 —

двадцать семь, если возвести три в третью степень. Так учит великая богиня чисел». Седьмая отвечала звездочету: «Пусть великая богиня чисел откроет сыну света свои прекрасные тайны! Вот как говорит она: это будет шесть, это будет тридцать три, это будет ничего, это будет девять, это будет единица, это будет двадцать семь и это будет тридцать шесть двадцать пятых с небольшим, если я из трех извлеку корень третьей степени. Вот как говорит пресветлая богиня чисел, та, которая улыбается, когда земледелец считает свою скотину, царь свои сокровища, а звездочет светила небесные, что сияют кротким светом и проходят свои небесные пути по чудным законам, которые любезны великой богине. Вот каковы слова благодатной богини чисел, но это еще не все, ибо ее речи суть многие, и все они прекрасны». Тогда звездочет сказал: «О великий царь, и ты, сын света! Вы слышали разные ответы на мой вопрос, и теперь вы можете решить сами, которая из девушек достойна стать супругой царевича». Царь сказал: «Я вижу, что милые и прелестные красавицы моей страны недаром провели свою нежную юность, они знают мудрость, и сердце мое радуется. Пусть сын мой, царевич Аритамвара, выбирает теперь сам, ибо это будет его супруга». Царевич низко поклонился своему отцу и премудрому звездочету и сказал: «Я выберу первую. Она очень хорошо смеется. И мне нравится, что она говорит коротко и ясно».

Илюша захлопал в ладоши от восторга, а Уникурсал Уникурсалыч как-то рассеянно повернулся на одной ножке и втихомолку исчез. А Илюша посмотрел на Радикса и спросил:

— Есть еще такие дроби, из которых получается колесо, вроде вот этого из одной седьмой?

— Как не быть! Например, одна семнадцатая. Только там число будет подлиннее, потому что

1/17 = 0,0588235294117647…

То же самое будет и с одной двадцать девятой, только там после запятой будет уже целых двадцать восемь цифр. Для этого знаменатель дроби должен быть простым числом, а период его должен заключать в себе на единицу меньше цифры, чем единиц в ее знаменателе. У тебя была одна седьмая, а в периоде было шесть цифр. Для одной семнадцатой в периоде будет шестнадцать цифр. Такой период называется «полным периодом», или «совершенным».

Илюша помолчал и вдруг сказал с жаром:

— А все-таки он ужаснейший человек, этот командор!

— 162 —

— Да что ты! — усмехнулся Радикс. — Конечно, он насмешник, а все-таки сознайся: если бы он так тебя не запутал и не разозлил, ты бы, пожалуй, не догадался насчет неопределенного уравнения и насчет одной седьмой? А?

Илюша посмотрел на своего приятеля с негодованием. Он хотел ему сказать, что тут ничего трудного нет и что он все равно бы догадался, но почему-то покраснел и ничего не сказал.

— Н-да… — неопределенно промычал Радикс. — Все это, конечно, очень приятно, трогательно, всепохвально, умно, тонко, глубоко и широко. А скажи, пожалуйста, кстати, не знаешь ли ты, как поживают наш почтенный судья дон Базилио и трое друзей дона Диего?

Илюша как-то странно смутился и сказал, что он не совсем понял эту странную задачку из Схолии Седьмой.

— А-а-а… — протянул Радикс. — Вон оно в чем дело-то! А еще на Уникурсала Уникурсалыча рычишь. А сам, значит, насчет завещания дона Диего ни так ни сяк…

После долгих и, надо признаться, довольно нелегких размышлений Илюша наконец пришел к целому ряду важных выводов, которые позволили ему решить эту хитрую задачку.

Когда Илюша взялся за дело как следует, то скоро ему надоело писать имена друзей дона Диего, и он обозначил дона Альваро, дона Бенито и дона Висенте начальными буквами их имен: А, Б и В. Он решил, что надо рассмотреть в качестве возможных порядков выбора все шесть возможных перестановок трех букв этих, то есть:

АБВ АВБ БАB БВА BАБ ВБА.

Очевидно, что три данных условия должны исключить из этих комбинаций ровно пять, так чтобы могла остаться только одна единственная комбинация, которая уже не будет противоречить ни одному из трех условий завещания. Вместе с тем, как было указано в завещании дона Диего, ни одно из этих условий не является лишним, то есть невозможно исключить те пять комбинаций, которые должны быть отброшены, только на основании одного условия или каких-нибудь двух из трех условий.