Вдруг Илюше почудилось, что вдалеке от него, где-то там, в самой глубине этого зала, мелькнул, а потом задрожал и замелькал какой-то свет. Илюша понял, что перед ним экран очень большого телевизора.
Вдруг экран вспыхнул, а кругом стемнело. Илюша увидел на экране небольшой письменный стол, на нем горела старинная керосиновая лампа с зеленым абажуром. Стол весь был завален папками, тетрадями, рукописями, книгами. Книг было так много, что некоторые лежали прямо на полу. За столом сидела небольшого роста женщина. По-видимому, она была ужасно занята. С воодушевлением писала она что-то, быстрое перо так и летало по бумаге. Потом вдруг она задумалась, откинулась на спинку своего кресла и стала внимательно вглядываться в те странные фигуры, которые носились высоко по залу. Как только она это сделала, движение этих громадных тел стало затихать. Она немного нахмурилась, словно желая еще более сосредоточиться; правая рука ее, державшая перо, сделала какой-то, вероятно, невольный жест, и все движение этих громад изменилось… Сперва одно неопределенной формы тело начало быстро носиться вокруг какой-то едва заметной точки, а затем все это словно утонуло в сумраке, и откуда-то выплыла огромная тень планеты Сатурн. Колоссальная планета медленно вращалась, покачиваясь то в ту, то в другую сторону, а ее необъятные кольца, обращаясь к Илюше то так, то иначе, казались то совсем круглыми, то превращались почти в линию, становясь к зрителю ребром. Сквозь тонкий туман, из которого состояли кольца, еле заметно мерцала далекая звездочка. Теперь Илья хорошо видел, что все эти громадные тела находились в полном подчинении у этой маленькой женщины с пером в руках и стоит ей только подумать о них по-иному, они в тот же миг начинают носиться по
— 464 —
этому громадному залу совсем по-другому. Получалось так, что этот зал был как бы лабораторией, в которой мощные математические образы проделывали в точности все, что им приказывало тонкое и проницательное воображение этой маленькой и такой привлекательной женщины. Илюша совсем замер и робко глядел то на нее, то на эти громады, носившиеся высоко над его головой.
— Кто это там, за столом, на экране? — спросил он шепотом у Радикса.
И тот ответил ему так же тихо:
— Это замечательная русская ученая Софья Васильевна Ковалевская, одна из первых женщин-математиков нового времени. Та самая, которую в Стокгольме в университетских кругах звали «профессор Sonya»… Ее работы привлекли в свое время (это было в конце девятнадцатого века) внимание всего ученого мира. Когда-нибудь и ты познакомишься поближе с ее изумительными трудами. А теперь я только могу добавить тебе, что она была не только ученой, но еще и недюжинной писательницей, и я бы посоветовал тебе прочесть ее «Воспоминания детства», написанные прекрасным русским языком.
Экран потух. Илюша обернулся к Радиксу, но в это время высоко, там, среди этих странных грушевидных самовращающихся тел, мелькнули тени. Седой как лунь человек с ясным и задумчивым взором подозвал к себе движением руки другого — тот был совсем молодой человек со свежим румянцем на щеках. Он почтительно подошел к старцу. А тот важным и строгим жестом показал ему на эти странной формы тела. Молодой человек почтительно поклонился и стал внимательно смотреть на их движение. Затем тень старца исчезла, а на щеках молодого человека легли морщины зрелого возраста и седина мелькнула в волосах. Илюша видел, что он управляет движением этих тел.
— Это, — прошептал на ухо Илюше его спутник, — великий русский ученый Пафнутий Львович Чебышев, а с ним его ученик Александр Михайлович Ляпунов, который работал семнадцать лет и решил вопрос о том, какие формы могут принимать небесные тела, то есть какие из этих форм устойчивы, а какие нет. Вот теперь, быть может, тебе станет яснее, что хотел сказать Ломоносов, когда писал о «собственных Платонах и быстрых разумом Невтонах», не правда ли?
Вслед за этим они попали еще в один громадный зал, где грандиозное количество светящихся искр медленно перелетало от одной стены к другой. Они вылетали тончайшей струен из одной ярко светящейся точки, рассыпались в воздухе и, опи-
— 465 —
сывая параболы, падали на противоположную стену. Они гасли на той стене, на которую падали, не сразу, благодаря чему на стене из них получался красиво светящийся эллипс.
— Этот светящийся эллипс имеет некоторое отношение к числам в треугольнике Паскаля и к биному Ньютона, с которым ты скоро ознакомишься в школе. Есть такая особая отрасль математики, которая занимается явлениями, носящими название «случайных».
— Случайных? — с удивлением сказал Илюша. — А что может в математике делать случайность?
— С какой-нибудь отдельной случайностью, разумеется, нам в математике делать нечего, но когда мы имеем дело с массовым явлением, целым комплексом случайных явлений, тогда уже совсем другое дело. Самый простой пример такой массы явлений — это ошибки измерения. Измерить какую-нибудь величину для астронома дело не простое, измерения производятся помногу раз и разными лицами. Ученые принимают все доступные меры, чтобы в их измерениях не было постоянно а ошибки, которая вызывается какой-либо определенной причиной, но со случайными ошибками управиться труднее. Однако и рассуждение и опыт говорят нам, что если для ошибок у нас нет никаких постоянно действующих в одном и том же направлении причин, то они будут беспорядочно изменять наши наблюдения то в одну сторону (скажем, в сторону «плюс»), то в другую (пусть это будет «минус»), и нет оснований для того, чтобы отклонения в одну сторону были систематически больше или встречались чаще, чем отклонения в другую. А если все это так, то разумно допустить, что наиболее близкая, по всей вероятности, к истинной искомая величина, которую мы измеряем, будет нами найдена в предположении, что наши случайные погрешности взаимно погашают друг друга. Если перевести все это рассуждение на математический язык, то мы получим в ответ от наших друзей, бесконечно малых, что при таких обстоятельствах и некоторых несложных допущениях искомая истинная величина совпадает со средней арифметической из целой массы наблюдений. Этот пример, конечно, не более как пример; было бы очень странно, если бы, опираясь на это, мы измерили рост каждого бойца в целом пехотном полку и затем вздумали утверждать, что это неверно, будто в этом полку есть и. высокие и низкие солдаты, нет, дескать, там все одного роста, точь-в-точь такого, как наша вычисленная средняя! Нет, мы говорим в таком случае, что средняя есть просто некоторая сводная характеристика этого коллектива, и не более того. Впрочем, мы нередко можем охарактеризовать наш коллектив и гораздо более подробно, то есть указать (а иной раз даже и предска-
— 466 —
зать), насколько в общем будут отклоняться наши данные от средней или даже сколько и каких отклонений от средней там будет наблюдаться. Итак, если я имею дело с массовым явлением, я имею возможность вычислить результаты некоторых случайных явлений. Допустим, ты подбрасываешь монету. У нее две стороны. Та, на которой отчеканен герб, обычно называют «орлом», а другую сторону — «решкой». Какова вероятность того, что монета упадет гербом вверх?
— Может быть и то и другое, — отвечал Илюша. — На ребро монета стать не может.
— Правильно. Вот математик и говорит, что поскольку это так, то вероятность выпадения «орла» или «решки» равносильна полной достоверности, то есть ничего другого выпасть не может. А что именно выпадет в данный момент, сказать трудно. Если бросать много раз, то они, в общем, должны выпасть в одинаковом количестве. Известный французский естествоиспытатель Бюффон в свое время проделал такой опыт: он бросил монету четыре тысячи сорок раз. «Орел» выпал две тысячи сорок восемь раз, а «решка» — тысяча девятьсот девяносто два раза. Полной точности в равенстве этих чисел, конечно, нельзя ожидать, ибо на белом свете не бывает математически точных монет, но в процентном отношении получилось довольно хорошо; пятьдесят и семь десятых процента и сорок девять и три десятых процента. Если принять полную достоверность за единицу, вероятность выпадения «орла» равна половине, «решки» — тоже половине. Понятно?