Если ядро Айсхейма маленькое, как ядро у Меркурия, Марса и земной Луны, то внутреннее тепло уйдёт на поверхность за счёт теплопередачи, планета быстро остынет, и Айсхейм превратится в стабильный мёртвый мир. Однако, если ядро Айсхейма более крупное, больше похожее на ядро Земли или Венеры, всё становится гораздо интереснее.
На самом деле Земля представляет собой яркий пример действия конвекции. На протяжении сотен миллионов лет породы в мантии планеты «кипят», вынося расплавленную магму из недр на поверхность. В целом, чем больше ядро, тем больше энергии будет подниматься вверх за счет конвекции. Для наших целей самой важной особенностью этого процесса является образование горячих вулканических источников — областей, где богатые энергией материалы выводятся на поверхность. Срединно-Атлантический хребет, подводная горная цепь, протянувшаяся от Исландии до края Антарктиды, представляет собой такую особенность. Эти горы состоят из магмы, которая поднялась из жерл на морском дне вдоль центральной рифтовой долины хребта, а затем остыла, когда достигла дна океана. Если ядро Айсхейма достаточно велико, то мы можем ожидать, что подо льдом будут присутствовать такого рода жерла, и этот факт будет очень важен, когда мы станем обсуждать развитие жизни в этом месте.
Существует два важных вида энергии, которые поднимутся на поверхность через жерла Айсхейма. Один из них — это, разумеется, тепло. Вполне вероятно, что тепла хватит, чтобы растопить достаточное количество льда и создать вокруг жерла пузырь жидкой воды значительных размеров. В таких пузырях мы ожидаем найти те же молекулярные процессы, которые привели к появлению жизни, наблюдаемой нами вокруг гидротермальных источников на Земле.
Второй вид энергии, которая поступит из недр планеты, будет иметь химическую природу. Мы знаем, что наряду с магмой гидротермальные источники срединно-океанических хребтов на Земле (называемые «чёрными курильщиками») выносят из недр смесь разнообразных химических элементов. Они поставляют сырьё для богатой и разнообразной глубоководной экологии. На Земле вблизи гидротермальных источников процветают живые существа, начиная с бактерий, находящихся в самом низу пищевой цепочки в глубоководных участках океана, и заканчивая гигантскими трубчатыми червями и крабами. Вместо того, чтобы использовать для энергетической подпитки жизни солнечный свет, как это происходит у деревьев и трав на поверхности Земли, эти бактерии используют для получения энергии для своего обмена веществ процесс, известный как хемосинтез — на основе метана и соединений серы, а также минералов, растворённых в жидкостях гидротермальных источников. Эта энергия приводит в движение целые экосистемы.
Очевидным дополнительным источником энергии для Айсхейма является излучение его звезды. На Земле Солнце поставляет первичную энергию, ответственную за жизнь. Поскольку температура поверхности Айсхейма ниже точки замерзания воды, мы ожидаем, что он либо вращается вокруг маленькой тусклой звезды, либо находится далеко от обычной звезды. Само по себе это не является непреодолимым препятствием для развития жизни — это просто означает, что всё, что собирает энергию, должно быть больше, чем то, к чему мы привыкли на Земле. Например, чтобы собрать такое же количество энергии, которое падает на Земле на лист площадью 1 квадратный дюйм (около 6 кв. см), длина стороны «листа» на Плутоне должна быть около 3 футов (1 м). (Это, кстати, объясняет, почему плутоний, а не солнечные коллекторы питают космические корабли, отправленные на внешний край солнечной системы. Солнечные коллекторы должны быть огромными и, следовательно, будут весить слишком много.) На Айсхейме свет звезды будет поглощаться льдом и, вероятно, проникнет в толщу поверхности не больше, чем на несколько ярдов.
Могут существовать и другие виды излучения звезды — такие, как солнечный ветер или выбросы частиц. Конечно, мы видим это на нашем Солнце. Однако эти вспышки, скорее всего, будут спорадическими и, вероятно, больше повредят, чем принесут пользу жизни на поверхности Айсхейма. Жизнь на поверхности, если бы она когда-нибудь утвердилась там, вероятно, смогла бы приспособиться к постоянному солнечному ветру, как это сделала жизнь на поверхности Земли. Однако в любом случае маловероятно, что эти явления могут повлиять на жизнь в нижней части ледяного слоя.
Таким образом, с точки зрения наблюдателя в ледяном слое планеты, Айсхейм обладает довольно простой энергетической экономикой. Тепло поступает к нижней стороне льда из ядра, просачивается вверх сквозь лёд и в итоге выходит в космос в виде инфракрасного излучения. В то же время излучение звезды питает энергией слой вблизи верхней стороны льда. Таким образом, стоящая перед нами проблема состоит в том, чтобы понять, как в такой среде будет развиваться жизнь.