Выбрать главу

Мы можем пойти ещё дальше. Ньютоновскую картину Солнечной системы можно уподобить часам. Движение планет можно сравнить с движением стрелок этих часов, тогда как законы движения соответствуют зубчатым колёсам, которые заставляют всё это работать. Применённый ко всей вселенной, этот образ мышления даёт картину порядка, равномерности и предсказуемости — того, что мы называем часовым механизмом Вселенной. В ньютоновском мире нет никаких сюрпризов, никаких неожиданных витков или поворотов. Например, летающие драконы, о которых мы упомянули в предыдущей главе, могли бы подняться в воздух только в том случае, если выталкивающая сила, связанная с их модифицированными плавательными пузырями, будет больше, чем сила тяжести, направленная вниз. Их способность маневрировать будет зависеть как от силы, прикладываемой к их крыльям при взмахах, так и от их массы. Законам Ньютона подчиняются даже детские сказки!

Этот взгляд на мир как на систему с часовым механизмом распространился далеко за пределы науки. Некоторые учёные даже утверждают, что Конституция Соединённых Штатов в долгу перед Исааком Ньютоном. Они утверждают, что отцы-основатели верили, будто они смогли бы открыть, как построить совершенное общество — точно так же, как Ньютон открыл, как устроить совершенную вселенную.

Увы, как мы вскоре увидим, эта картина порядка и предсказуемости не пережила 20-й век. Однако до того момента часовой механизм вселенной послужил фундаментом для развития ещё двух областей науки — ещё двух столпов, на которых будет основываться наше обсуждение жизни на экзопланетах.

Электричество и магнетизм

И статическое электричество (сила, которая заставляет вязаный носок прилипать к полотенцу, когда вы вытаскиваете его из сушилки для белья), и магнетизм (сила, которая позволяет вам прикреплять памятки к холодильнику) известны с древности. Электричество как диковинку изучали ещё древние греки, которые поняли, что оно бывает двух видов — это то, что мы сегодня называем положительным и отрицательным зарядами, — и что разноимённые заряды притягиваются друг к другу, тогда как одноимённые отталкиваются. Однако до 18 века это было практически почти всё, что о нём знали, поскольку считалось, что от этого явления было мало пользы.

Однако магнетизм — это нечто другое. Во-первых, магниты встречаются в природе — это минерал железа, называемый магнитным железняком. Существует множество легенд о его открытии: одна история гласит, что древнегреческий (или, возможно, македонский) пастух по имени Магнес заметил мелкие осколки камней, прилипшие к гвоздям на его обуви. (Предполагается, что именно отсюда и родился термин «магнетизм».) Другая легенда гласила, что где-то в Эгейском море есть остров, сделанный из магнитного камня, и корабли, которые отваживались подойти слишком близко к его берегам, рисковали потерять все железные гвозди, которыми скреплялись их доски.

Однако если оставить в стороне эти россказни, природные магниты обладают одним чрезвычайно важным свойством. Они всегда ориентируются в направлении север-юг, поэтому их можно использовать в качестве компасов. Компас был полезным инструментом, потому что позволял людям определять направление, даже когда у них в поле зрения не оказывалось знакомых ориентиров. Для моряков на борту кораблей в открытом океане или для путешественников в пустынях, где нет дорог, работающий компас был находкой. Китайцы использовали примитивные компасы, изготовленные из магнитного железняка, ещё в 4 веке до нашей эры. Позже, в 9-м и 10-м веках нашей эры, когда викинги вышли из Скандинавии, занимаясь набегами и грабежами по всей Европе, они двигались в открытом море и сквозь густой туман, также пользуясь магнитным железняком.

Дальнейшие исследования электричества и магнетизма выявили два ключевых аспекта их природы. Родившийся примерно за столетие до Ньютона английский учёный Уильям Гилберт (1544-1603), бывший также врачом королевы Елизаветы I, открыл закон, определяющий основные свойства магнитов. Магнитные полюса не могут существовать сами по себе, по отдельности, поэтому у каждого магнита есть, как минимум, одна пара полюсов (сейчас мы называем их северным и южным). Затем французский учёный Шарль Огюстен де Кулон (1736-1806), родившийся почти через десять лет после смерти Ньютона, тщательно исследовал силу, возникающую между электрическими зарядами, и обнаружил, что её можно описать простым уравнением, аналогичным по форме закону тяготения Ньютона. (Мы не будем брать на себя труд приводить это уравнение здесь, потому что в дальнейшем оно нам не понадобится.)