Одна из целей Кронина — создание металлической версии естественного отбора. Вот как он может работать: ячейка iCHELL будет заполнена несколькими крупными молекулами и молекулами меньшего размера, которые более крупные могли бы использовать для построения молекулярных структур. Конкуренция между более крупными молекулами за более мелкие была бы металлическим эквивалентом естественного отбора, и успешные молекулы, заключенные в металлическую оболочку, были бы аналогом первых на Земле клеток на углеродной основе. Это действительно амбициозный проект, и Кронин, безусловно, обладает научными знаниями, необходимыми для его реализации. Впрочем, авторы считают, что было бы разумно подождать, пока не будет достигнут дальнейший прогресс в данном подходе к неорганической жизни, прежде чем размышлять о том, как такой процесс может происходить на экзопланете.
Хотя подход с использованием iCHELL к созданию чего-то, что можно было бы назвать «живым», зависит от экзотического вида химии, другие учёные полностью отказались от химии в своих поисках жизни, совершенно не похожей на нас. Например, в 2009 году международная группа теоретиков под руководством физика В. Н. Цытовича из Российской академии наук создала компьютерную модель с интересными выводами в отношении природы жизни. Собственно, они начали с облака пылевых частиц, заключённого в плазму. Определение: плазма — это газ, в котором у части атомов были вырваны один или несколько электронов; созданные таким образом положительные ионы, а также электроны способны свободно перемещаться. Обычный способ образования плазмы в природе заключается в повышении температуры газа, что делает сильнее столкновения между атомами и в итоге выбивает из них слабее всего связанные электроны. Плазма довольно распространена во Вселенной — например, вещество на Солнце почти полностью состоит из плазмы — и её не так уж сложно создать: вы делаете это всякий раз, когда включаете флуоресцентную лампочку. Таким образом, природная среда, представленная в компьютерной модели, не является особо экзотической. В пылевой плазме некоторые электроны присоединяются к частицам пыли и тем самым создают отрицательно заряженные частицы, которые также могут свободно перемещаться.
Теоретики обнаружили, что при определённых условиях действие электрическиех и магнитных сил в системе плазма-пыль способствует сбору пыли в структуры, которые можно описать только как микроскопические спирали. Они сами несут электрический заряд и могут, например, расти и разделяться на две спирали, каждая из которых является копией исходного объекта. Возможно, мы захотели бы обозначить этот процесс как воспроизводство. Кроме того, некоторые из спиралей более стабильны, чем другие, что приводит к своего рода выживанию наиболее приспособленных, которое мы связываем с естественным отбором.
Таким образом, мы можем сказать, что самоорганизующиеся пылинки в плазменной среде проявляют некоторые формы поведения, которые мы ассоциируем с живыми системами. Кроме того, они соответствуют нашему определению термодинамической жизни, поскольку поддержание существования плазмы при высокой температуре требует затрат энергии, а спирали явно далеки от состояния равновесия. Однако, сказав это, мы должны подчеркнуть, что все эти модели поведения до сих пор существуют лишь в компьютерной модели, но не в лаборатории или в космосе. Такая форма жизни может быть возможной, но нам нужно будет увидеть физическое проявление этого прежде, чем хотя бы просто подумать, действительно ли то или иное пылевое облако является живым.
Вообще, когда физики вроде команды Цытовича думают о том, как создавать сложные немолекулярные системы, они обычно обращаются мыслями к электричеству и магнетизму. Как было показано в главе 2, эти явления регулируются группой законов, известной как уравнения Максвелла. Там, где они непосредственно относятся к нашему обсуждению, говорится, что
• электрические токи (т.е. движущиеся электрические заряды) создают магнитные поля и
• изменяющиеся магнитные поля создают электрические токи
Второе из этих утверждений как раз и объясняет, например, генерацию индуцированных электрических токов, о чём мы говорили в главе 13.