Выбрать главу

Применяются только базовые математические операции (сложение, вычитание, умножение и деление, плюс несколько операций посложнее, вроде возведения в степень и извлечения корня). Кроме того, я как мог старался сделать текст занимательным: на самом деле никто не любит задач о трех трубах, которые наполняют бассейн, и еще двух, которые (по никому не известным причинам) одновременно с этим пытаются его осушить.

Комментарии к книге, ответы на вопросы и вопросы о вопросах можно присылать по адресу shapirapiano@gmail.com. Желаю вам увлекательного путешествия!

Разминка

Краткое введение в размышления

Размышления: разговор души с самой собой.

Платон

Если вы не поленились и прочитали предисловие, вы уже знаете, что у меня есть довольно солидная коллекция книг по математике. Одно из моих любимых занятий – возиться с интересными задачами. Ну, для меня-то это естественно. Я этому и учился. Но чтобы увидеть красоту и изящество математики, необязательно заканчивать математический факультет. Если вам хватает терпения немного подумать, вы найдете тысячи интересных – и иногда весьма знаменитых – математических задач и парадоксов, которыми уже много веков восхищается стар и млад. Стоит приложить немного усилий, и почти кто угодно сможет испытать тот восторг, в который приводит способность решать головоломки, кажущиеся на первый взгляд чрезвычайно сложными.

В этом разделе я представлю скромный набор математических задач из числа моих любимых, от довольно простых до весьма глубоких и даже предположительно неразрешимых (а если вы их все-таки решите, вас ждет премия). Я хочу познакомить вас, мой уважаемый читатель, хотя бы с немногими образцами интереснейших размышлений, которые вы можете найти в поразительном мире математики.

Великое маленькое исследование – открытая проблема

Много лет назад я прочитал удостоенную Пулитцеровской премии книгу Дугласа Р. Хофштадтера «Гёдель, Эшер, Бах». Сам автор называет ее «метафорической фугой о разумах и машинах в духе Льюиса Кэрролла». Она рассказывает о самых разнообразных предметах из царств математики, музыки, симметрии, искусственного интеллекта и логики и содержит множество математических загадок. Я хотел бы познакомить вас с одной из них.

Возьмем любое число – точнее, любое целое или натуральное число. Ахилл (он же Ахиллес – тот самый, у которого были проблемы с пяткой), также ставший одним из персонажей книги Хофштадтера, задумал число 15. Вы, разумеется, можете выбрать любое число по своему вкусу.

Теперь сделаем вот что: если это число четное, разделим его на 2. Если оно нечетное, умножим его на 3 и прибавим 1. Будем повторять эту процедуру снова и снова, пока не получим (если получим) число 1. Посмотрим, как это работает:

Поскольку 15 – число нечетное, умножим его на 3 и прибавим 1.

15 × 3 + 1 дает 46.

46 – число четное: разделим его на 2 и получим 23. Поскольку это число нечетное, умножим его на 3 и прибавим 1.

23 × 3 + 1 = 70

Продолжим этот процесс:

70/2 = 35;

35 × 3 + 1 = 106;

106/2 = 53;

53 × 3 + 1 = 160;

160/2 = 80;

80/2 = 40;

40/2 = 20;

20/2 = 10;

10/2 = 5;

5 × 3 + 1 = 16;

16/2 = 8;

8/2 = 4;

4/2 = 2, и наконец 2/2 = 1.

Процесс дошел до конца.

Спрашивается, правда ли, что эта процедура рано или поздно приводит к 1 для любого исходного числа?

Попробуйте подставить в нее пару других чисел. Для некоторых из них этот процесс может оказаться чрезвычайно долгим, и вам, возможно, понадобится очень большой лист бумаги. Если вы попытаетесь запустить этот процесс на компьютере, имейте в виду – вычисления могут затянуться.

Хофштадтер предложил Ахиллесу попробовать число 27. Вы можете последовать его примеру. Я дам вам пару минут… или, может быть, часов.

Сдаетесь? Если начать с 27, кажется, что процесс все продолжается и продолжается и дает нескончаемую цепочку вычислений. В какой-то момент вы можете решить, что она и впрямь никогда не закончится. На самом деле требуемое в этом случае число шагов равно 111.

В своей книге Хофштадтер предостерегает Ахиллеса относительно попыток найти ответ на заданный выше вопрос (действительно ли из любого числа можно получить 1?) и рассказывает, что эта задача известна под названием «гипотеза Коллатца» (напомню на всякий случай, что «гипотеза» значит «догадка» или, точнее, «предложение возможной новой теоремы, которую еще нужно доказать»). Она утверждает, что, с какого бы числа мы ни начали описанный выше процесс, он рано или поздно приведет к 1. Эта гипотеза названа в честь немецкого математика Лотара Коллатца (1910–1990), впервые описавшего ее в 1937 г. Тем не менее у нее есть и другие названия: в частности, ее называют гипотезой Улама (по имени польского математика Станислава Улама) или задачей Какутани (по имени японского математика Сидзуо Какутани). Иногда говорят просто о гипотезе 3n + 1, что вполне логично.