Однако действительность оказалась сложнее, чем я ожидал: на письменном экзамене я потратил все четыре часа на то, чтобы решить и оформить задачи, у меня даже не осталось времени на проверку, и я так вымотался, что долго не мог прийти в себя. Дело в том, что в тот год вступительная работа оказалась на редкость трудной из-за знаменитой задачи с шаром, у которого надо было найти ту часть объема, которая высекалась пирамидой с вершиной в центре шара.
Я потратил более двух часов на ее решение, пока не нашел очень простой комбинаторный способ, состоящий в том, что я представил себе шар гипсовым и, как бы работая мастерком, стал удалять из него все лишнее, двигаясь по граням пирамиды (которые совпадали с большими кругами-сечениями шара). При этом по нескольку раз отбрасывались ломтики, похожие на ломтики апельсина, объем которых легко считался. В общем, все дело сводилось к аккуратному комбинаторному подсчету отброшенного и оставшегося.
В итоге я все-таки сделал какую-то арифметическую ошибку при подсчете, но все равно получил за экзамен пятерку, затем сдал без особых проблем «на отлично» устный экзамен и в июле 1967 года был принят на первый курс механико-математического факультета МГУ.
Мне повезло, я еще застал знаменитую эпоху расцвета мехмата. Наверное, никогда ни в одном математическом центре мира не собиралось под одной крышей столько выдающихся математиков! Колмогоров, Петровский, Шафаревич, Александров, Гельфанд, еще совсем молодые блистательные Арнольд, Новиков, Манин, Синай, Аносов, Кириллов — всех просто невозможно перечислить. И все читали интереснейшие спецкурсы и вели спецсеминары, на которые приходило столько студентов, что приходилось брать стулья в соседних аудиториях и даже сидеть во время занятий на подоконниках, пристроив тетрадки у себя на коленях.
А какой интересной и интенсивной была внематематическая жизнь! Тот же П. С. Александров регулярно проводил свои знаменитые музыкальные вечера, В ДК МГУ проходили интереснейшие спектакли и концерты, в аудитории 01 по вечерам показывали киноклассику, был доступен университетский бассейн, теннисные корты и многое другое.
В столовой зоны «Б» и в знаменитой закусочной, прозванной студентами (совершенно несправедливо) «тошниловкой», прекрасно и дешево кормили, а рядом по-соседству в небольшом кондитерском магазине можно было купить такие недоступные в городе деликатесы, как миндаль в шоколаде.
Московский университет с его громадным зданием представлял из себя целый мир, и этот мир мне ужасно нравился.
Уже на первом курсе я начал посещать спецкурс Александрова по общей топологии, но вскоре мои друзья Игорь Кричевер и Витя Турчанинов буквально утащили меня на проходивший в то же время спецсеминар А. Г. Витушкина, на котором тогда во всех подробностях разбиралось доказательство леммы Жордана о том, что несамопересекающаяся непрерывная замкнутая кривая разбивает плоскость на две области. Для меня эти занятия оказались очень хорошим уроком, продемонстрировав, как далеки бывают наши интуитивные представления от четкого математического доказательства.
С громадным удовольствием я посещал спецкурс Рашевского по дифференциальной геометрии и алгебрам Ли, потому что Рашевский обладал замечательно неторопливой манерой чтения и так прекрасно продумывал свои лекции, что они очень хорошо воспринимались студентами.
Но особенное впечатление произвела на меня вышедшая ротапринтным изданием книга Фоменко и Гутенмахера «Гомотопическая топология». Во-первых, там были загадочные рисунки Анатолия Тимофеевича, которые, согласно авторскому предисловию, должны были иллюстрировать математический текст книги, а во-вторых, меня совершенно поразил подход к доказательствам, который использовался в ней. Я уже привык к тому времени к четким алгебраизованным доказательствам на «6» языке, а тут читателю в качестве доказательств предлагали всего лишь наглядные и, как мне казалось, нестрогие геометрические наблюдения. Но потом я сообразил, что каждое приведенное там доказательство может быть переписано абсолютно формально и, стало быть, проверено, что, думаю, надо один раз в жизни проделать каждому математику, но только один раз, не больше, потому что само осмысление сути происходящего должно формулироваться именно в наглядных геометрических терминах.
Во многом под влиянием этой книжки я решил заниматься в дальнейшем алгебраической топологией и попросил в конце второго курса Михаила Михайловича Постникова быть моим научным руководителем.