Выбрать главу

На первом году аспирантуры произошло событие, которое полностью изменило мою жизнь: А. В. Чернавский и В. А. Голубева организовали небольшой спецсеминар по дифференциальным уравнениям на комплексных многообразиях, участниками которого стали мы с В. Лексиным. Одним из основных инициаторов была Валентина Алексеевна Голубева, беззаветно любящая математику и обладающая уникальным чутьем на новые интересные статьи, идеи. Вы могли спросить ее мнение о какой-либо работе и получить такой ответ: «Я ее не читала, но думаю, что в ней сделано то-то и то-то», и она часто оказывалась права!

Голубева хотела, чтобы мы разобрали статью французского математика Раймона Жерара, перенесшего на многомерный случай теорию фуксовых систем голландца Тони Левельта и сделавшего первые шаги на пути исследования обобщения знаменитой проблемы Римана-Гильберта о построении фуксовой системы уравнений по заданным особенностям и монодромии. Но начали мы все же со знаменитой работы Хельмута Рорля, впервые применившего к такого рода задачам методы алгебраической геометрии.

Я погрузился в новый для меня мир аналитической теории дифференциальных уравнений, и этот мир пленил меня. Замечательно, что здесь оказались востребованы и мои знания основ алгебраической геометрии, что счастливым образом помогло позднее мне получить ряд известных результатов по классической проблеме Римана-Гильберта, в задаче о Биркгофовой стандартной форме и некоторые другие результаты. Но все это произошло позднее, а пока, разбирая работу Жерара, я нашел в ней грубую (хотя и хитро спрятанную) ошибку, которая не поддавалась простому исправлению. По сути дела надо было начинать все сначала, я попытался это сделать, и в итоге мне удалось построить обобщение теории Левельта на многомерный случай. Этот результат составил предмет моей кандидатской диссертации, которую я успешно защитил в 1976 году в МГУ. А Алексей Викторович Чернавский стал моим вторым полноправным научным руководителем.

На первом году аспирантуры мне пришлось делать выбор между занятиями поэзией и математикой: и то и другое требуют всего человека целиком, всех его сил, всего времени. Невозможно получить хороший результат, работая урывками по 5–6 часов в день, надо погрузиться в задачу полностью, не оставляя ее ни на секунду в течение длительного времени, целиком сконцентрироваться на ней. Точно так же вы не сможете успешно заниматься поэзией, если не будете постоянно поддерживать в себе особое настроение, то необычное мироощущение, которое, собственно, и является основой любого поэтического произведения.

Впрочем, на самом деле выбор я уже сделал, поступив в аспирантуру, а первые полученные мной результаты, мучительный поиск решения и озарение внезапного понимания сути происходящего, приносили мне ничуть не меньшую радость, чем занятия поэзией.

Но все равно мне было очень больно наблюдать, как отмирает за невостребованностью моя способность воспринимать самые тонкие нюансы, обертоны поэтических произведений, как снижается острота сопереживания и способность проникнуться мироощущением читаемого поэта. Но это неизбежная плата за выбор, за профессионализм в выбранном ремесле.

Конечно, я и сейчас с большим удовольствием перечитываю своих любимых поэтов, но то, что я при этом испытываю, не идет ни в какое сравнение с теми эмоциями, которыми сопровождалось их чтение в замечательные далекие студенческие годы.

Общественные науки

Как часто мне приходилось слышать от моих коллег, что их жизнь на мехмате МГУ была бы прекрасна, если бы не необходимость заниматься общественными науками: историей партии, философией, политэкономией. Сколько трагических историй о загубленной аспирантуре или о неудачно сданной сессии по причине именно общественных наук можно найти в студенческом фольклоре. Скажу сразу, что никогда полностью не понимал и не принимал этих рассказов.

Мне кажется, что многие эти истории скорее говорят об интеллектуальной лени их персонажей, не способных или не желавших сделать над собой минимальное умственное усилие для того, чтобы решить эту заведомо разрешимую проблему.