Выбрать главу

Каждое вращающееся колесо с последующим рядом неподвижных лопаток представляет собой ступень компрессора. В одной ступени давление воздуха увеличивается обычно на 20—30%, но так как таких ступеней осевой компрессор имеет несколько, от 5 до 15 и даже более, то выходящий из осевого компрессора воздух обычно имеет давление, большее, чем в случае центробежного компрессора.

В современных турбореактивных двигателях чаще применяется осевой компрессор. Это объясняется тем, что в осевом компрессоре можно получить большие степени сжатия воздуха, чем в центробежном. Увеличение степени сжатия воздуха в компрессоре, как об этом будет сказано ниже, является одним из важных направлений развития турбореактивных двигателей. Кроме того, через осевой компрессор может пройти за секунду больше воздуха, чем через центробежный компрессор такого же диаметра. Тяга же турбореактивного двигателя, как мы знаем, прямо пропорциональна секундному количеству протекающего через него воздуха.

Центробежный компрессор применялся на большинстве турбореактивных двигателей в те времена, когда эти двигатели только появились. Он применяется и теперь обычно в тех случаях, когда решающими факторами являются надежность в эксплуатации и простота изготовления двигателя.

Для вращения компрессора требуется затрачивать значительно большую мощность, чем для вращения воздушного винта. Работа сжатия воздуха зависит от того, как сильно он сжимается, сколько его сжимается и каков коэффициент полезного действия компрессора, т. е. какая часть всей мощности компрессора затрачивается на полезную работу сжатия. В новейших турбореактивных двигателях компрессор ежесекундно сжимает десятки килограммов воздуха, увеличивая его давление в 6—7 раз и более. Неудивительно, что несмотря на очень высокий коэффициент полезного действия компрессора, часто превышающий 80%, мощность, потребная для привода компрессора, достигает в мощных турбореактивных двигателях почти 50 000 лошадиных сил! Конечно, если бы для привода компрессора пришлось установить обычный поршневой двигатель, то реактивных самолетов с большой скоростью полета не существовало бы. Самые мощные из известных поршневых авиационных двигателей развивают мощность не больше 4000 лошадиных сил. Можно было бы создать и двигатели такой огромной мощности, как 50 000 лошадиных сил, хотя это и очень трудная задача. Но такие двигатели имели бы столь большие размеры и вес, что для них нужно было бы построить самолеты огромных размеров. Такие самолеты могли бы летать, конечно, только с очень небольшой скоростью, так как сопротивление их было бы очень велико.

В турбореактивных двигателях для вращения компрессора применяется не поршневой двигатель, а двигатель другого типа — газовая турбина. Этим и объясняется название — турбокомпрессорный реактивный или просто турбореактивный двигатель.

Турбина устанавливается в турбореактивном двигателе за компрессором. Но прежде чем попасть в турбину, воздух, сжатый компрессором, поступает в камеру сгорания двигателя, которая находится между компрессором и турбиной.

Камера сгорания представляет собой одну из важнейших частей турбореактивного двигателя; в ней происходит сгорание топлива, на котором работает двигатель. Обычно этим топливом является керосин, хотя может применяться и бензин. То обстоятельство, что турбореактивные двигатели работают не на бензине, а на керосине, является их дополнительным преимуществом, так как из нефти можно получить значительно больше керосина, чем бензина. Кроме того, удельный вес керосина больше, чем бензина; это значит, что в те же топливные баки самолета может поместиться по весу больше топлива и, следовательно, с этим топливом самолет сможет дальше улететь. Правда, есть у керосина и недостатки. Он, например, менее летуч, чем бензин, а поэтому хуже сгорает в двигателе, что особенно неблагоприятно сказывается при полете на большой высоте, где условия горения и без того ухудшаются. Поэтому ученые и исследователи стремятся найти такое топливо для турбореактивных двигателей, которое обладало бы достоинствами керосина, но было лишено его недостатков.

На рис. 13 показано устройство камеры сгорания турбореактивного двигателя РД-500. Таких камер на двигателе установлено 9; поэтому на диффузоре центробежного компрессора этого двигателя, показанном на рис. 11, можно видеть 9 патрубков, по которым воздух, выходящий из компрессора, подводится к камерам сгорания. Схема работы камеры сгорания показана также на рис. 13. Топливо — керосин — впрыскивается в движущийся с большой скоростью воздушный поток и сгорает в нем. Сгорание топлива в потоке воздуха, движущемся с большой скоростью, связано с очень сложными физическими процессами; о них будет подробнее рассказано ниже, в главе 7. Такое сгорание трудно изучить и трудно добиться, чтобы оно протекало хорошо, а ведь без этого нельзя создать и хорошего турбореактивного двигателя.