Рис. 24. Принципиальные схемы двухконтурных турбореактивных двигателей
В двухконтурном турбореактивном двигателе сделан только первый шаг на пути уменьшения расхода топлива при малых скоростях полета. В турбовинтовом двигателе сделан второй такой шаг. В турбовинтовом двигателе, как и в турбореактивном, весь воздух направляется в камеру сгорания, но газы, вытекающие из камеры сгорания, расширяются в газовой турбине полностью, а не частично, как в турбореактивном двигателе. Вследствие этого давление газов за турбиной турбовинтового двигателя равно атмосферному, поэтому газы вытекают из двигателя наружу с небольшой скоростью, создавая таким образом лишь небольшую реактивную тягу. Но зато мощность газовой турбины, которой газы передают весь свой запас полезной энергии, значительно увеличивается и становится большей, чем мощность, необходимая для привода компрессора. Таким образом получается избыточная мощность, которая используется для вращения воздушного винта. Для передачи мощности с вала двигателя на воздушный винт применяется шестеренчатый редуктор (рис. 25), без которого в турбовинтовом двигателе обойтись нельзя, так как нельзя вращать винт с таким большим числом оборотов, которое развивает газовая турбина. Для более эффективной работы газовая турбина должна вращаться гораздо быстрее, чем это допустимо с точки зрения эффективной работы воздушного винта, так как воздушный винт имеет гораздо больший диаметр. Редуктор уменьшает число оборотов воздушного винта по сравнению с числом оборотов турбины раз в 10—15, а то и более. Следует заметить, что редуктор вызвал немало трудностей при доводке турбовинтового двигателя, что было одной из причин, задержавших широкое внедрение этих двигателей в авиации. Но еще большие трудности, однако, были связаны с доводкой систем регулирования турбовинтовых двигателей.
В настоящее время можно считать, что основные трудности, задерживавшие серийное производство турбовинтовых двигателей, преодолены. Турбовинтовые двигатели, сочетающие достоинства воздушного винта как движителя для умеренных скоростей полета с конструктивными преимуществами газотурбинного двигателя, в частности гораздо меньшим «лбом» (диаметром) (рис. 26), имеют несомненные перспективы широкого применения в авиации.
Рис. 25 Турбовинтовой двигатель: а — принципиальная схема; б — двигатель на испытательном стенде
В особенности они выгодны для самолетов гражданской авиации. В будущем основным типом самолетов, летающих на местных и на магистральных авиалиниях, будут, вероятно, самолеты с турбовинтовыми, а не с поршневыми двигателями. На экспрессных же линиях будут эксплуатироваться реактивные самолеты с турбореактивными двигателями, выгодные в тех случаях, когда на первый план выступает скорость полета, а его экономичность является второстепенным фактором.
Рис. 26. Относительные размеры поршневого (сверху) и турбовинтового (снизу) двигателей при одинаковой их мощности
Рассказ о двухконтурном и турбовинтовом двигателях может вызвать у читателя неверное представление о том, что обычный турбореактивный двигатель усложняется только тогда, когда его приспосабливают к меньшим скоростям полета. Это, конечно, не так. Турбореактивный двигатель прост лишь по принципиальной схеме; в действительности он представляет собой весьма сложную машину. Дальнейшее совершенствование двигателя приводит к его постепенному усложнению, которое оказывается необходимым в связи с ростом требований, предъявляемых к двигателям современных самолетов. В подтверждение этого достаточно привести следующие два примера.