Войдем снова в бокс. Резкий грохот обрушивается на нас, как только мы открываем дверь. Двигатель сильно вибрирует и, кажется, вот-вот сорвется со станка под действием развиваемой им тяги. Из выходного отверстия вырывается струя раскаленных газов, устремляющаяся в воронку отсасывающего устройства. Двигатель быстро разогрелся. Осторожно, не положите руку на его корпус — обожжете!
Стрелка на большом циферблате прибора для измерения тяги — динамометра, установленного в помещении так, что его показания можно прочесть через окна наблюдательной кабины, колеблется около цифры 250. Значит, двигатель развивает тягу, равную 250 кг. Но понять, как работает двигатель и почему он развивает тягу, нам все же не удается. Компрессора в двигателе нет, а из него с большой скоростью вырываются газы, создавая тягу; значит, давление внутри двигателя повышено. Но как? Чем сжимается воздух?
Рис. 40. Пульсирующий воздушно-реактивный двигатель:
а — принципиальная схема; б — схема установки дефлекторов 1 и входной решетки 2 (на рисунке справа входная решетка снята); в — передняя часть двигателя; г — устройство решетки
На этот раз нам не помог бы даже и зеленый воздушный океан, с помощью которого мы раньше наблюдали за работой винта и турбореактивного двигателя. Если бы мы поместили работающий пульсирующий двигатель с прозрачными стенками в такой океан, то перед нами предстала бы такая картина. Спереди к выходному отверстию двигателя устремляется засасываемый им воздух — перед этим отверстием появляется знакомая нам воронка, которая своим узким и более темным концом обращена к двигателю. Из выходного отверстия вытекает струя, имеющая темнозеленый цвет, свидетельствующий о том, что скорость газов в струе велика. Внутри двигателя цвет воздуха по мере его продвижения к выходному отверстию постепенно темнеет, значит скорость движения воздуха увеличивается. Но почему это происходит, какую роль играет решетка внутри двигателя? Ответить на этот вопрос мы все еще не можем.
Не многим помог бы нам и другой воздушный океан — красный, к помощи которого мы прибегали при изучении работы турбореактивного двигателя. Мы убедились бы только в том, что сразу за решеткой цвет воздуха в двигателе становится темнокрасным, значит в этом месте его температура резко возрастает. Это легко объяснимо, так как здесь, очевидно, происходит сгорание топлива. Темнокрасный цвет имеет и реактивная струя, вытекающая из двигателя, — это раскаленные газы. Но почему эти газы вытекают с такой большой скоростью из двигателя, мы так и не узнали.
Может быть, загадку можно разъяснить, если воспользоваться таким искусственным воздушным океаном, который показывал бы нам, как изменяется давление воздуха? Пусть это будет, например, синий воздушный океан, причем такой, что цвет его становится тем более темносиним, чем больше давление воздуха. Попытаемся при помощи этого океана выяснить, где и как рождается внутри двигателя то повышенное давление, которое заставляет вытекать из него газы с такой большой скоростью. Но увы, и этот синий океан не принес бы нам большой пользы. Поместив в такой воздушный океан двигатель, мы увидим, что за решеткой воздух сразу густо синеет, значит он сжимается и его давление резко повышается. Но как это происходит? Ответа на этот вопрос мы все же не получим. Потом в длинной выходной трубе воздух снова бледнеет, следовательно, в ней он расширяется; благодаря этому расширению скорость истечения газов из двигателя оказывается такой большой.
В чем же все-таки заключается секрет «таинственного» сжатия воздуха в пульсирующем двигателе?
Этот секрет, оказывается, можно разгадать, если применить для изучения явлений в двигателе киносъемку «лупой времени». Если прозрачный работающий двигатель сфотографировать в синем воздушном океане, делая тысячи снимков в секунду, а затем показать получившийся фильм с обычной частотой 24 кадра в секунду, то перед нами на экране медленно развертывались бы процессы, стремительно происходящие в двигателе. Тогда нетрудно было бы понять, почему не удается рассмотреть эти процессы на работающем двигателе, — они так быстро следуют один за другим, что глаз в обычных условиях не успевает следить за ними и фиксирует лишь какие-то усредненные явления. «Лупа времени» позволяет «замедлить» эти процессы и делает возможным их изучение.