Рис. 59. Конструктивная схема прямоточного воздушно-реактивного двигателя. Центральное тело используется для размещения вспомогательных агрегатов:
1 — центральное тело; 2 — регулятор; 3 — подача топлива; 4 — пневмотурбина; 5 — топливная форсунка; 6 — реактивное сопло; 7 — горелка; 8 — запальная свеча; 9 — воздушный патрубок; 10 — генератор; 11 — насос; 12 — прибор зажигания; 13 — топливный бак
Но простая замена прямого скачка перед входом в двигатель косым, оказывается, не до конца решает задачу уменьшения потерь при торможении и сжатии воздуха, поступающего в двигатель. Если косой скачок мало наклонен по отношению к направлению поступающего в двигатель воздушного потока, т. е. близок к прямому скачку, то и потери в таком скачке будут близкими к потерям в прямом скачке. Если же косой скачок будет сильно наклонен к направлению потока, то потери в нем будут малыми, но такой скачок не решит задачи, так как скорость потока за ним будет все еще очень большой, значительно превышающей скорость звука (см. скачок 1 на рис. 57); поэтому в потоке за этим скачком снова возникнет прямой скачок с большими потерями.
При детальном теоретическом и экспериментальном исследовании задачи о том, как осуществить с наименьшими потерями торможение и сжатие воздуха, поступающего в прямоточный двигатель, оказалось, что наивыгоднейший способ торможения зависит от скорости полета. Если скорость полета превышает скорость звука не более чем в 1,5 раза, то вполне допустим простой прямой скачок: потери в нем в этом случае не так велики. При дальнейшем увеличении скорости полета до скоростей, в два раза превышающих скорость звука, должна быть применена — двухскачковая система, т. е. косой скачок с последующим прямым. Чем больше скорость полета, тем сложнее должна быть система скачков на входе в двигатель — воздушный поток должен пройти через два или три косых скачка, а затем через завершающий прямой скачок. Поэтому выступающий вперед носок центрального тела снабжают специальными уступами, от которых берут свое начало последующие косые скачки, возникающие вслед за первым косым скачком, «садящимся» на самое острие носка (рис. 60). Замыкающий слабый прямой скачок располагается обычно на самом входе в диффузор, так что по диффузору воздух течет с дозвуковой скоростью. Вследствие этого диффузор сверхзвукового двигателя имеет обычно такую же форму расширяющейся трубы, как и диффузор дозвукового двигателя.
Описанный выше так называемый многоскачковый диффузор оказывается гораздо более выгодным, чем диффузор с одним прямым скачком перед ним. Вот, например, какое давление будет внутри двигателя, летящего со скоростью, вчетверо превышающей скорость звука (на высоте 20 км):
в случае прямого скачка — 1,2 кг/см2;