По вопросу о том, как сила вызывает движение, вы должны подумать о движущемся объекте, очерчивающем кривую в пространстве. Тогда вопрос в том, как отличается кривая в зависимости от того, есть ли сила, действующая на объект, или нет. Ответ установлен двумя первыми законами Ньютона. Если силы нет, кривая, вдоль которой движется тело, есть прямая линия. Если сила есть, она вызывает ускорение тела.
Невозможно сформулировать эти законы без математики. Прямая линия суть идеальная математическая концепция; она живет не в нашем мире, а в Платоновом мире идеальных кривых. А что такое ускорение? Это темп изменения скорости, которая сама является темпом изменения положения. Чтобы описать это адекватно, Ньютону пришлось изобрести целый новый раздел математики: дифференциальное исчисление.
Раз у вас есть необходимая математика, она непосредственно вырабатывает следствия. Один из первых вопросов, на который Ньютон должен был дать ответ с помощью своего нового инструментария [6], был о том, какую траекторию будет иметь планета под действием силы от Солнца, которая уменьшается пропорционально квадрату расстояния. Ответ: Это может быть эллипс, парабола или гипербола в зависимости от того, имеет планета замкнутую орбиту или однократно проходит мимо Солнца. Ньютон также сумел обобщить законы падения Галилея в своем законе гравитации [7]. Таким образом, Галилей и Кеплер рассмотрели разные аспекты единого феномена, которым является гравитация.
В истории человеческого разума есть мало чего более глубокого, чем
открытие этой скрытой общности между падением и движением по орбите. Но под громадностью Ньютоновского достижения имеется непреднамеренное следствие, заключающееся в том, что его труд сделал наше понимание природы намного более математическим, чем ранее. Аристотель и его современники описывали движение в терминах склонностей: Земные объекты имеют склонность стремиться к центру Земли, воздух имеет склонность убегать от центра и так далее. Это была, по существу, описательная наука. Там не было предположений, что пути, вдоль которых двигаются объекты, имеют какие-либо специальные свойства, и, следовательно, не было интереса к использованию математики для описания движения на Земле. Математика, будучи вневременной, была божественной и применимой только к тем божественным и вечным явлениям, которые мы могли видеть и которые были только в небесах.
Когда Галилей открыл, что падающие тела описываются простой математической кривой, он захватил аспект божественного, привнесенный вниз с неба, и показал, что этот аспект мог бы быть открыт в движении повседневных объектов на Земле. Ньютон продемонстрировал, что громадное разнообразие движений на Земле и в небе, инициированное или гравитацией или другими силами, является проявлением скрытого единства. Различные движения являются следствиями единственного закона движения.
К моменту, когда Ньютон закончил объединение движений в небе и на Земле, мы жили в едином унифицированном мире. И это был мир, вдохновленный божественностью, поскольку сердцем всего, что движется на Земле и в небе, была вечная математика. Если безвременность и вечность являются свойствами божественного, тогда наш мир - то есть, целая история нашего мира - может быть столь же вечным и божественным, как математическая кривая.
3
Игра в мяч
Чтобы обратиться к проблеме, поднятой в двух первых главах, нам надо знать больше о том, как мы определяем движение. Кажется, чего проще: Движение есть изменение положения во времени. Но что такое положение и что такое время?
Есть два ответа, которые физики давали на кажущийся безобидным вопрос об определении положения. Первый есть соответствующая здравому смыслу идея, что положение объекта определяется относительно вехи некоторого сорта; второй - что имеется нечто абсолютное в пространственном положении, без отношения к чему-либо еще. Это называется, соответственно, реляционистская и абсолютистская точки зрения на пространство.