Дальше по этой дороге имеется еще более красивая наука. Дело в том, что, как отмечалось в предыдущей главе, вы не можете применить второй закон термодинамики иначе как для изолированной системы, закрытой в ящике, который предотвращает обмен веществом и энергией с внешним миром. Ни одна живая система не является изолированной. Мы все переправляем потоки вещества и энергии — потоки, которые, в конечном счете, приводятся в движение энергией Солнца. Будучи закрытыми в ящик (как прообраз нашего возможного погребения), мы умираем.
Так что Аристотель был прав, когда утверждал, что земная сфера удерживается вдалеке от равновесия за счет потока энергии через нее. Недостаточное признание его идеи привело к тому, что некоторые ученые и философы усмотрели конфликт между вторым законом термодинамики и тем фактом, что естественный отбор производит все более маловероятные структуры. Тут нет противоречия, поскольку закон роста энтропии к биосфере не применим, она не является изолированной системой. Действительно, естественный отбор является механизмом самоорганизации, которая может спонтанно возрасти вследствие тенденции управляемых извне систем организовывать себя.
В контексте самоорганизующихся систем мы можем лучше понять, какие особенности делают систему сложной. Очень сложная система не может находиться в равновесии, поскольку порядок не хаотичен, так что высокая энтропия и высокая сложность не могут сосуществовать. Описание системы как сложной не только означает, что она имеет низкую энтропию. Цепочка атомов, сидящих на прямой, имеет низкую энтропию, но вряд ли является сложной. Лучшей характеристикой сложности, изобретенной Джулианом Барбуром и мной, является то, что мы называем разнообразием: система имеет высокое разнообразие, если каждую пару ее подсистем можно отличить друг от друга заданием минимального количества информации о том, как они связаны или соотносятся с целым[176]. Город имеет высокое разнообразие, поскольку вы легко опишете, что вы видите вокруг перекрестка, на котором стоите. Такие условия появляются в природе в системах, далеких от равновесия, в результате процессов самоорганизации.
Повсеместным свойством таких самоорганизующихся систем является то, что они стабилизируются за счет механизма обратной связи. Любое живое существо является сложной сетью процессов обратной связи, которые регулируют, канализируют и стабилизируют потоки энергии и вещества через него. Обратная связь может быть положительной, что означает, она ускоряет производство чего-нибудь (вроде скрежета микрофона, когда он поднесен слишком близко к говорящему). Отрицательная обратная связь действует на подавление сигнала, как в термостате, который включает ваш обогрев, когда дом слишком холодный, и выключает его, когда дом слишком теплый.
Структуры в пространстве и времени формируются тогда, когда за контроль над системой соревнуются различные механизмы обратной связи. Когда механизм положительной обратной связи состязается с механизмом отрицательной обратной связи, но они действуют на разных масштабах, вы можете получить структуры в пространстве. Основной механизм биологической самоорганизации, открытый Аланом Тьюрингом[177], действует, чтобы произвести структуры в эмбрионе, которые выделяют части тела, которым эмбрион станет. Позднее он может действовать снова, чтобы произвести, например, полоски на шкуре кота или крылья бабочки.
Что мы видим, когда заглядываем за пределы масштаба звезд и солнечной системы? Звезды организованы в галактики, поскольку именно в галактиках звезды и делаются. Сами галактики далеки от термодинамического равновесия. Наш собственный Млечный Путь является типичной спиральной галактикой. Он содержит не только звезды, но и гигантские межзвездные облака газа и пыли, из которых формируются звезды. Газ медленно собирается извне в диск галактики; это один из двигателей изменений в галактике. Пыль производится звездами и впрыскивается в галактический диск, когда звезды взрываются в конце своей жизни в виде сверхновых. Газ и пыль существуют в различных фазах; некоторые очень горячие, а некоторые конденсированы в очень холодные облака. Процессы самоорганизации в галактике инициируются звездным светом — потоками энергии, происходящими от звезд. Время от времени массивные звезды взрываются в виде сверхновых, таким образом, также вливая огромное количество вещества и энергии в галактику. Мы также видим структуры на масштабах больше галактических, где галактики организуются в кластеры и сети, разделяемые пустотами (войдами). Эти структуры, как мы верим, сформированы темной материей и удерживаются вместе ее взаимодействиями.
176
Julian Barbour & Lee Smolin, «Variety, Complexity and Cosmology» «Разнообразие, Сложность и Космология».
177
Alan Turing, «The Chemical Basis of Morphogenesis» «Химические Основы Морфогенеза»,