Но даже они не смогли бы сделать следующий шаг, а именно, увидеть единство, заключенное в земной параболе и планетарном эллипсе. Это осуществил Исаак Ньютон.
Поскольку Галилей и Кеплер жили после разрушения сфер, они могли бы спросить, не приводит ли достаточно сильный бросок чего-нибудь к выходу на орбиту и не приводит ли ослабление движения объекта по орбите к падению. Для нас очевидно, что это не два явления, а одно. Но это не было очевидным для них. Иногда требуется поколение или около того, прежде чем простейшие следствия новых открытий окажутся в центре внимания. На полвека позже Ньютон понял, что движение по орбите есть форма падения, и завершил унификацию небес и Земли.
Одной из подсказок было математическое единство двух кривых, описывающих движение. Эллипсы описывают планетарные орбиты, а параболы — пути падающих тел на Земле. Эти два вида кривых тесно связаны. Они оба могут быть получены рассечением конуса плоскостью. Сконструированные таким образом кривые называются коническими сечениями; другими примерами являются окружности и гиперболы.
Вопросом для второй половины 17-го века было открытие физического единства, объясняющего это математическое единство. Догадка, которую выдвинул Ньютон, чтобы вступить в Научную Революцию, касалась природы, а не математики, и не принадлежала ему одному. Несколько его современников осознали великий секрет: Сила, которая заставляет все на Земле падать на нее, универсальна и действует также, притягивая планеты к Солнцу, а Луну к Земле. Гравитация.
Рис. 3. Конические сечения, показанные светом фонарика на стене
Ньютон по легенде получил свое прозрение, сидя в своем саду и наблюдая за падением яблок с дерева, когда он размышлял над движением Луны. Чтобы завершить мысль, он задал другой решающий вопрос: Как эта сила уменьшается с расстоянием между объектами? Она должна уменьшаться, в противном случае нас бы выталкивало вверх к Солнцу, а не вниз к Земле. И как сила производит движение?
Другие, такие как современник Ньютона Роберт Гук, задавали эти вопросы, но успех Ньютона заключался в его правильных ответах на них. Ему потребовалось два десятилетия усилий, что вылилось в теорию движения и сил, которую мы называем Ньютоновской физикой.
Для наших целей самой главной вещью в отношении этих вопросов является то, что они математические. Как сила уменьшается с расстоянием, можно представить, написав простое уравнение. Правильный ответ, который знает любой студент-физик первого года обучения, что сила уменьшается пропорционально квадрату расстояния. Поразительным результатом нашей концепции природы является то, что такое простое математическое соотношение охватывает универсальное явление природы. Природа не должна быть так ошеломляюще проста — и, на самом деле, древние никогда не размышляли о таких простых и универсальных применениях математики для изучения причин движения.
По вопросу о том, как сила вызывает движение, вы должны подумать о движущемся объекте, очерчивающем кривую в пространстве. Тогда вопрос в том, как отличается кривая в зависимости от того, есть ли сила, действующая на объект, или нет. Ответ установлен двумя первыми законами Ньютона. Если силы нет, кривая, вдоль которой движется тело, есть прямая линия. Если сила есть, она вызывает ускорение тела.
Невозможно сформулировать эти законы без математики. Прямая линия суть идеальная математическая концепция; она живет не в нашем мире, а в Платоновом мире идеальных кривых. А что такое ускорение? Это темп изменения скорости, которая сама является темпом изменения положения. Чтобы описать это адекватно, Ньютону пришлось изобрести целый новый раздел математики: дифференциальное исчисление.